Entropy Number of Diagonal Operator

DOI: 10.4236/jamp.2019.73051   PDF   HTML     223 Downloads   365 Views  


In this paper, the entropy number of diagonal operator is discussed. On the one hand, the order of entropy number of the finite dimensional diagonal operator Dm (1≤q<p≤∞) is estimated. On the other hand, the order of entropy number of a class of in finite dimensional diagonal operator D: lplq(1≤q<p≤∞) is estimated.

Share and Cite:

Chen, J. , Lu, W. , Xiao, H. , Wang, Y. and Tan, X. (2019) Entropy Number of Diagonal Operator. Journal of Applied Mathematics and Physics, 7, 738-745. doi: 10.4236/jamp.2019.73051.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.


[1] Pietsch, A. (1978) Operator Ideals. In: Mathematische Monographien, Vol. 16, VEB, Deutscher Verlag der Wissenschaften,Berlin. (Reprinted in North-Holland, Amsterdam-New York,1980, 168-175)
[2] Schutt, C. (1984) Entropy Numbers of Diagonal Operators between Symmetric Banach Spaces. Journal of Approximation Theory, 40, 121-128.
[3] Kuhn, T. (2005) Entropy Numbers of General Diagonal Operators. Revista Matemtica Complutense, 18, 479-491.
[4] Carl, B. and Stephani, I. (1990) Entropy, Compactness and the Approximation of Operators. In: Bollabas, B., Fulton, W., Kirwan, F., Sarnak, P., Simon, B. and Totaro, B., Eds., Cambridge Tracts in Mathematics, Vol. 98, Cambridge University Press,Cambridge.
[5] Belinsky, E.S. (1998) Estimates of Entropy Numbers and Gaussian Measures for Classes of Functions with Bounded Mixed Derivative. Journal of Approximation Theory, 93, 114-127.
[6] Dung, D. (2001) Non-Linear Approximations Using Sets of Finite Cardinality or Finite Pseudo-Dimension. Constructive Approximation, 17, 467-492.
[7] Lorentz, G.G., Golitschek, M.V. and Makovoz, Y. (1985) Constructive Approximation. Springer, Berlin.
[8] Carl, B. (1981) Entropy Numbers, s-Numbers, and Eigenvalue Problems. Journal of Functional Analysis, 41, 290-306.
[9] Carl, B. (1981) Entropy Numbers of Embedding Maps between Besov Spaces with an Application to Eigenvalue Problems. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 90, 63-70.
[10] Edmunds, D.E. and Triebel, H. (1996) Function Spaces, Entropy Numbers, Di erential Operators. In: Bollabas, B., Fulton, W., Kirwan, F., Sarnak, P., Simon, B. and Totaro, B., Eds., Cambridge Tracts in Mathematics, Vol. 120, Cambridge University Press, Cambridge.
[11] Haroske, D.D. and Triebel, H. (2005) Wavelet Bases and Entropy Numbers in Weighted Function Spaces. Mathematische Nachrichten, 278, 108-132.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.