Evaluation of Biotinylated PAMAM Dendrimer Toxicity in Models of the Blood Brain Barrier: A Biophysical and Cellular Approach


The interaction of biotinylated G4 poly(amidoamine) (PAMAM) dendrimer conjugates and G4 PAMAM dendrimers with in vitro models of the blood brain barrier (BBB) was evaluated using Langmuir Blodgett monolayer techniques, atomic force microscopy (AFM) and lactate dehydrogenase measures of cell membrane toxicity. Results indicate that both G4 and G4 biotinylated PAMAM dendrimers disrupt the composition of the liquid condensed (LC) and liquid expanded (LE) phases of the 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid monolayer. The disruption is concentration dependent and more marked for G4 biotinylated PAMAMs. Lactate dehydrogenase (LDH) assays using endothelial cell culture models of the BBB indicate that biotinylation results in higher levels of toxicity than non-biotinylation. This approach provides valuable information to assess nanoparticle toxicity for drug delivery to the brain.

Share and Cite:

Bullen, H. , Hemmer, R. , Haskamp, A. , Cason, C. , Wall, S. , Spaulding, R. , Rossow, B. , Hester, M. , Caroway, M. and Haik, K. (2011) Evaluation of Biotinylated PAMAM Dendrimer Toxicity in Models of the Blood Brain Barrier: A Biophysical and Cellular Approach. Journal of Biomaterials and Nanobiotechnology, 2, 485-493. doi: 10.4236/jbnb.2011.225059.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] R. Dermietzel and D. Krause, “Molecular Anatomy of the Blood-Brain Barrier as Defined by Immunocytochemistry,” International Review Cytology, Vol. 127, No. 1991, pp. 57-109.
[2] T. S. Reese and M. J. Karnovsky, “Fine Structural Localization of a Blood-Brain Barrier to Exogenous Peroxidase,” The Journal of Cell Biology, Vol. 34, No. 1, 1967, pp. 207-217. doi:10.1083/jcb.34.1.207
[3] G. Savettieri, I. Di Liegro, C. Catania, L. Licata, G. L. Pitarresi, S. D’Agostino, G. Schiera, V. De Caro, G. Giandalia, L. I. Giannola and A. Cestelli, “Neurons and ECM Regulate Occludin Localization in Brain Endothelial Cells,” NeuroReport, Vol. 11, No. 5, 2000, pp. 1081-1084. doi:10.1097/00001756-200004070-00035
[4] K. Mertsch and M. Jochen, “Blood-Brain Barrier Penetration and Drug Development from an Industrial Point of View,” Current Medicinal Chemistry: Central Nervous System Agents, Vol. 2, No. 3, 2002, pp. 187-201. doi:10.2174/1568015023358067
[5] H. Yang, “Nanoparticle-Mediated Brain-Specific Drug Delivery, Imaging and Diagnosis,” Pharmaceutical Research, Vol. 27, No. 9, 2010, pp. 1759-1771. doi:10.1007/s11095-010-0141-7
[6] S. Bhaskar, F. Tian, T. Stoeger, W. Kreyling, J. de la Fuente, V. Grazú, P. Borm, G. Estrada, V. Ntziachristos and D. Razansky, “Multifunctional Nanocarriers for Diagnostics, Drug Delivery and Targeted Treatment across Blood-Brain Barrier: Perspectives on Tracking and Neuroimaging,” Particle and Fibre Toxicology, Vol. 7, No. 3, 2010, pp. 1-25.
[7] A. Agarwal, N. Lariya, G. Saraogi, N. Dubey, H. Agrawal and G. P. Agrawal, “Nanoparticles as Novel Carrier for Brain Delivery: A Review,” Current Pharmaceutical Design, Vol. 15, No. 8, 2009, pp. 917-925. doi:10.2174/138161209787582057
[8] J. L. Gilmore, Y. Xiang, Q. Lingdong and A. Kabanov, “Novel Nanomaterials for Clinical Neuroscience,” Journal of NeuroImmune Pharmacology, Vol. 3, No. 2, 2008, pp. 83-94. doi:10.1007/s11481-007-9099-6
[9] G. M. Dykes, “Dendrimers: A Review of Their Appeal and Applications,” Journal of Chemical Technology and Biotechnology, Vol. 76, No. 9, 2001, pp. 903-918. doi:10.1002/jctb.464
[10] D. A. Tomalia, “Birth of a New Macromolecular Architecture: Dendrimers as Quantized Building Blocks for Nanoscale Synthetic Organic Chemistry,” Progress in Polymer Science, Vol. 30, No. 3-4, 2005, pp. 294-324. doi:10.1016/j.progpolymsci.2005.01.007
[11] D. A. Tomalia, “The Emergence of a New Macromolecular Architecture: The Dendritic State,” In: J. E. Mark, Physical Properties of Polymers Handbook, Springer, New York, 2007, pp. 671-692. doi:10.1007/978-0-387-69002-5_42
[12] D. A. Tomalia, S. A. Henderson and M. S. Diallo, “Dendrimers—An Enabling Synthetic Science to Controlled Organic Nanostructures,” In: W. A. I. Goddard, D. W. Brenner, S. E. Lyshevski and G. J. Iafrate, Eds., Handbook of Nanoscience, Engineering and Technology, CRC Press, Boca Raton, 2007, pp. 24.1-24.47. doi:10.1201/9781420007848.ch24
[13] D. Astruc, E. Boisselier and C. Ornelas, “Dendrimers Designed for Functions: From Physical, Photophysical and Supramolecular Properties to Applications in Sensing, Catalysis, Molecular Electronics, Photonics and Nano-medicine,” Chemical Reviews, Vol. 110, No. 4, 2010, pp. 1857-1959.doi:10.1021/cr900327d
[14] V. Gajbhiye, V. K. Palanirajan, R. K. Tekade and N. K. Jain, “Dendrimers as Therapeutic Agents: A Systematic Review,” Journal of Pharmacy and Pharmacology, Vol. 61, No. 8, 2010, pp. 989-1003. doi:10.1211/jpp.61.08.0002
[15] M. A. Mintzer and M. W. Grinstaff, “Biomedical Applications of Dendrimers: A Tutorial,” Chemical Society Reviews, Vol. 40, No. 1, 2011, pp. 173-190. doi:10.1039/b901839p
[16] K. C. Petkar, S. S. Chavhan, S. Agatonovik-Kustrin and K. K. Sawant, “Nanostructured Materials in Drug and Gene Delivery: A Review of the State of the Art,” Critical Reviews in Therapeutic Drug Carrier Systems, Vol. 28, No. 2, 2011, pp. 101-164.
[17] W. Wijagkanalan, S. Kawakami and M. Hashida, “Designing Dendrimers for Drug Delivery and Imaging: Pharmacokinetic Considerations,” Pharmaceutical Research, Vol. 28, No. 7, 2011, pp. 1500-1019. doi:10.1007/s11095-010-0339-8
[18] U. Boas and P. M. Heegaard, “Dendrimers in Drug Research,” Chemical Society Reviews, Vol. 33, No. 1, 2004, pp. 43-63. doi:10.1039/b309043b
[19] R. Huang, W. Ke, l. Han, Y. Liu, K. Shao, L. Ye, J. Lou, C. Jiang and Y. Pei, “Brain-Targeting Mechanisms of Lactoferrin-Modified DNA-Loaded Nanoparticles,” Journal Cerebral Blood Flow & Metabolism, Vol. 29, 2009, pp. 1914-1923.
[20] G. Wu, R. F. Barth, W. Yang, S. Kawabata, L. Zhang and K. Green-Church, “Targeted Delivery of Methotrexate to Epidermal Growth Factor Receptor-Positive Brain Tumors by Means of Cetuximab (IMC-C225 Dendrimer Bioconjugates,” Molecular Cancer Therapeutics, Vol. 5, 2006, pp. 52-59.
[21] T. L. Kaneshiro and Z. R. Lu, “Targeted Intracellular Codelivery of Chemotherapeutics and Nucleic Acid with a Well-Defined Dendrimer-Based Nanoglobular Carrier,” Biomaterials, Vol. 30, 2009, pp. 5660-5666.
[22] R. Duncan and L. Izzo, “Dendrimer Biocompatibility and Toxicity,” Advanced Drug Delivery Reviews, Vol. 57, No. 15, 2005, pp. 2215-2237. doi:10.1016/j.addr.2005.09.019
[23] K. M. Kitchens, M. E. El-Sayed and H. Ghandehari, “Transepithelial and Endothelial Transport of Poly(amidoamine) Dendrimers,” Advanced Drug Delivery Reviews, Vol. 57, No. 2005, pp. 2163-2176.
[24] R. Spector and D. Mock, “Biotin Transport through the Blood-Brain Barrier,” Journal of Neurochemistry, Vol. 48, No. 2, 1987, pp. 400-404. doi:10.1111/j.1471-4159.1987.tb04107.x
[25] F. Shi, C. Bailey, A. W. Malick and K. L. Audus, “Biotin Uptake and Transport across Bovine Brain Microvessel Endothelial Cell Monolayers,” Pharmaceutical Research, Vol. 10, 1993, pp. 282-288.
[26] N. Sato, H. Kobayashi, T. Saga, Y. Nakamoto, T. Ishimori, K. Togashi, Y. Fujibayashi, J. Konishi and M. W. Brechbiel, “Tumor Targeting and Imaging of Interaperitoneal Tumors by Use of Antisense Oligo-DNA Complexed with Dendrimers and/or Avidin in Mice,” Clinical Cancer Research, Vol. 7, 2001, pp. 3606-3612.
[27] D. S. Wilbur, P. M. Pathare, D. K. Hamlin, K. R. Buhler and R. L. Vessella, “Biotin Reagents for Antibody Pretargeting. 3. Synthesis, Radioiodination and Evaluation of Biotinylated Starburst Dendrimers,” Bioconjugate Chemistry, Vol. 9, No. 6, 1998, pp. 813-825. doi:10.1021/bc980055e
[28] H. C. Yoon, M. Y. Hong and H. S. Kim, “Affinity Biosensor for Avidin Using a Double Functionalized Dendrimer Monolayer on a Gold Electrode,” Analytical Biochemistry, Vol. 282, No. 1, 2000, pp. 121-128. doi:10.1006/abio.2000.4608
[29] S. Beg, A. Samad, M. I. Alam and I. Nazish, “Dendrimers as Novel Systems for Delivery of Neuropharmaceuticals to the Brain,” CNS & Neurological Disorders—Drug Targets, Vol. 10, No. 5, 2011, pp. 576-588.
[30] C. A. Cason, S. A. Oehrle, T. A. Fabre, C. Girten, K. A. Walters, D. A. Tomalia, K. L. Haik and H. A. Bullen, “Improved Methodology for Monitoring Poly(ami-doamine) Dendrimers Surface Transformations and Product Quality by Ultra Performance Liquid Chromatography,” Journal of Nanomaterials, Vol. 2008, 2008, Article ID 456082, 7 Pages.
[31] R. Montesano, M. S. Pepper, U. Mohle-Steinlein, W. Risau, W. F. Wagner and L. Orci, “Increased Proteolytic Activity Is Responsible for the Aberrant Morphogenetic Behavior of Endothelial Cells Expressing the Middle T Oncogene,” Cell, Vol. 62, No. 3, 1990, pp. 435-445. doi:10.1016/0092-8674(90)90009-4
[32] K. S. Birdi, “Dipalmitoyllecithin Monolayers at the Air/ Water Interface,” Langmuir, Vol. 3, No. 1987, pp. 132- 133.
[33] K. J. Klopfer and T. K. Vanderlick, “Isotherms of Dipalmitoylphosphatidylcholine (DPPC) Monolayers: Features Revealed and Features Obscured,” Journal of Colloid and Interface Science, Vol. 182, No. 1, 1996, pp. 220-229. doi:10.1006/jcis.1996.0454
[34] C. Peetla and V. Labhasetwar, “Effect of Molecular Structure of Cationic Surfactants on Biophysical Interactions of Surfactant-Modified Nanoparticles with a Model Membrane and Cellular Uptake,” Langmuir, Vol. 25, No. 4, 2009, pp. 2369-2377. doi:10.1021/la803361y
[35] C. Nunes, G. Brezesinski, C. Pereira-Leite, J. L. Lima, S. Reis and M. Lúcio, “NSAIDs Interactions with Membranes: A Biophysical Approach,” Langmuir, Vol. 27, No. 17, 2011, pp. 10847-10858. doi:10.1021/la201600y
[36] R. K. Harishchandra, M. Saleem and H.J. Galla, “Nanoparticle Interaction with Model Lung Surfactant Monolayers,” Journal of the Royal Society Interface, Vol. 7, Suppl. 1, 2010, pp. S15-S26.
[37] V. Tiriveedhi, K. M. Kitchens, K. J. Nevels, H. Ghandehari and P. Butko, “Kinetic Analysis of the Interaction between Poly(amidoamine) Dendrimers and Model Lipid Membranes,” Biochimica et Biophysica Acta, Vol. 1808, No. 1, 2011, pp. 209-218. doi:10.1016/j.bbamem.2010.08.017
[38] H. Bensikaddour, N. Fa, I. Burton, M. Deleu, L. Lins, A. Schanck, R. Brasseur, Y. F. Dufrêne, E. Goormaghtigh and M. P. Mingeot-Leclercq, “Characterization of the Interactions between Fluoroquinolone Antibiotics and Lipids: A Multitechnique Approach,” Biophysical Journal, Vol. 94, No. 8, 2008, pp. 3035-3046. doi:10.1529/biophysj.107.114843
[39] A. Mecke, S. Uppuluri, T. M. Sassanella, D.K. Lee, A. Ramamoorthy, J. R. J. Baker, B. G. Orr and M. M. Banaszak Holl, “Direct Observation of Lipid Bilayer Disruption by Poly(amidoamine) Dendrimers,” Chemistry and Physics of Lipids, Vol. 132, No. 2004, pp. 3-14.
[40] E. Bonfoco, D. Krainc, M. Ankarcrona, P. Nicotera and S. A. Lipton, “Apoptosis and Necrosis: Two Distinct Events Induced, Respectively, by Mild and Intense Insults with N-methyl-D-aspartate or Nitric Oxide/Superoxide in Cortical Cell Cultures,” Proceedings of the National Academy of Sciences, Vol. 92, No. 16, 1995, pp. 7162-7166. doi:10.1073/pnas.92.16.7162
[41] T. Decker and M.L. Lohmann-Matthes, “A Quick and Simple Method for the Quantitation of Lactate Dehydrogenase Release in Measurements of Cellular Cytotoxicity and Tumor Necrosis Factor (TNF) Activity,” Journal of Immunological Methods, Vol. 15, No. 1998, pp. 61-69.
[42] C. Legrand, J. Bour, C. Jacob, J. Capiaumont, A. Martial, A. Marc, M. Wudtke, G. Kretzmer, C. Demangel and D. Duval, “Lactate Dehydrogenase (LDH) Activity of the Cultured Eukaryotic Cells as Marker of the Number of Dead Cells in the Medium,” Journal of Biotechnology, Vol. 25, No. 1995, pp. 231-243.
[43] X. Han, R. Gelein, N. Corson, P. Wade-Mercer, J. Jiang, P. Biswas, J. N. Finkelstein, A. Elder and G. Oberdorster, “Validation of an LDH Assay for Assessing Nanoparticle Toxicity,” Toxicology, Vol. 287, No. 1-3, 2011, pp. 99-104. doi:10.1016/j.tox.2011.06.011
[44] J. Teeguarden, P. Hinderliter, G. Orr, B. Thrall and J. Pounds, “Particokinetics in Vitro: Dosimetry Considerations for in Vitro Nanoparticle Toxicity Assessments,” Toxicological Sciences: An Official Journal of the Society of Toxicology, Vol. 95, No. 2, 2007, pp. 300-312. doi:10.1093/toxsci/kfl165

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.