Share This Article:

Organocatalyzed Decarboxylation of Naturally Occurring Cinnamic Acids: Potential Role in Flavoring Chemicals Production

Abstract Full-Text HTML Download Download as PDF (Size:278KB) PP. 85-93
DOI: 10.4236/ojpc.2011.13012    8,887 Downloads   19,696 Views   Citations


The mechanism and the final outcome of the Knoevenagel-Doebner reaction are discussed. The condensation reaction between different hydroxy-substituted aromatic aldehydes and malonic acid is performed using piperidine as organocatalyst. The key role of the catalyst is clearly pointed out during the decarboxylation of ferulic acid, without the use of a strong decarboxylating agent, leading to a 4-vinylphenol derivative. Based on the results obtained, the studied pathway may be important in the understanding of vinylphenol production during malting and brewing of wheat and barley grains. Finally, changing the solvent of the reaction from pyridine to water in the Knoevenagel-Doebner reaction of 4-hydroxybenzaldehydes, dimerization of resulting styrene derivatives is observed. These results can be of interest also in the field of food chemistry, since cinnamic acids are frequently found in fruits and vegetables used for human consumption.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

V. Aldabalde, M. Derrudi, D. Gamenara, F. Geymonat, P. Saenz-Méndez, M. Risso and G. Seoane, "Organocatalyzed Decarboxylation of Naturally Occurring Cinnamic Acids: Potential Role in Flavoring Chemicals Production," Open Journal of Physical Chemistry, Vol. 1 No. 3, 2011, pp. 85-93. doi: 10.4236/ojpc.2011.13012.


[1] R. Hatfield and W. Vermerris, “Lignin Formation in Plants. The Dilemma of Linkage Specificity,” Plant Physiology, Vol. 126, No. 4, 2001, pp. 1351-1357. doi:10.1104/pp.126.4.1351
[2] A. -M. Boudet, “Lignins and Lignification: Selected Issues,” Plant Physiology and Biochemistry, Vol. 38, No. 1-2, 2000, pp. 82-96. doi:10.1016/S0981-9428(00)00166-2
[3] G. Kaupp, M. R. Naimi-Jamal and J. Schmeyers, “Solvent-Free Knoevenagel Condensations and Michael Additions in the Solid State and in the Melt with Quantitative Yield,” Tetrahedron, Vol. 59, No. 21, 2003, pp. 3753- 3760. doi:10.1016/S0040-4020(03)00554-4
[4] B. List, A. Doehring, M. T. H. Fonseca, A. Job and R. Rios Torres, “A Practical, Efficient, and Atom Economic Alternative to the Wittig and Horner-Wadsworth-Emmons Reactions for the Synthesis of (E)-Unsaturated Esters from Aldehydes,” Tetrahedron, Vol. 62, No. 2-3, 2006, pp. 476-482. doi:10.1016/j.tet.2005.09.081
[5] M. Tanaka, O. Oota, H. Hiramatsu and K. Fujiwara, “The Knoevenagel Reactions of Aldehydes with Carboxy Com- pounds. I. Reactions of p-Nitrobenzaldehyde with Active Methine Compounds,” Bulletin of the Chemical Society of Japan, Vol. 61, No. 7, 1988, pp. 2473-2479. doi:10.1246/bcsj.61.2473
[6] K. A. Ahrendt, C. J. Borths and D. W. C. MacMillan, “New Strategies for Organic Catalysis: The First Highly Enantioselective Organocatalytic Diels-Alder Reaction,” Journal of the American Chemical Society, Vol. 122, No. 17, 2000, pp. 4243-4244. doi:10.1021/ja000092s
[7] P. I. Dalko and L. Moisan, “Enantioselective Organocatalysis,” Angewandte Chemie International Edition, Vol. 40, 2001, pp. 3726-3748. doi:10.1002/1521-3773
[8] K. Juhl and K. A. Jorgensen, “The First Organocatalytic Enantioselective Inverse-Electron-Demand Hetero-Diels- Alder Reaction,” Angewandte Chemie International Edition, Vol. 42, No. 13, 2003, pp. 1498-1501. doi:10.1002/anie.200250652
[9] D. W. C. MacMillan, “The Advent and Development of Organocatalysis,” Nature, Vol. 455, 2008, pp. 304-308. doi:10.1038/nature07367
[10] M. L. Derrudi, F. Geymonat, V. Aldabalde, D. Gamenara, G. Seoane and P. S. Méndez, “Síntesis Organocatalítica Eficiente de Precursors de Fenilglicidatos Funcionalizados,” XVII-Simposio Nacional de Química Orgánica, Mendoza, 2009.
[11] F. Geymonat, V. Aldabalde, M. L. Derrudi, D. Gamenara, G. Seoane and P. S. Méndez, “Efecto de las Condiciones en el Curso de la Reacción Descarboxilativa de Knoevenagel,” XVII-Simposio Nacional de Química Orgánica, Mendoza, 2009.
[12] C. J. Simpson, M. J. Fitzhenry and N. P. J. Stamford, “Preparation of Vinylphenols from 2- and 4-Hydroxy- benzaldehydes,” Tetrahedron Letters, Vol. 46, No. 40, 2005, pp. 6893-6896. doi:10.1016/j.tetlet.2005.08.011
[13] A. K. Sinha, A. Sharma and B. P. Joshi, “One-Pot Two-Step Synthesis of 4-Vinylphenols from 4-Hydroxy Substituted Benzaldehydes under Microwave Irradiation: A New Perspective on the Classical Knoevenagel-Doeb- ner Reaction,” Tetrahedron, Vol. 63, No. 4, 2007, pp. 960- 965. doi:10.1016/j.tet.2006.11.023
[14] J. M. Ames and G. Macleod, “Volatile Components of Okra,” Phytochemistry, Vol. 29, No. 4, 1990, pp. 1201- 1207.
[15] H. Y. Chung, “Volatile Flavor Components in Red Fermented Soybean (Glycin Max) Curds,” Journal of Agricultural and Food Chemistry, Vol. 48, No. 5, 2000, pp. 1803-1809. doi:10.1021/jf991272s
[16] P. Pihlsg?rd, M. Larsson, A. Leufvén and H. Lingnert, “Volatile Compounds in the Production of Liquid Beet Sugar,” Journal of Agricultural and Food Chemistry, Vol. 48, No. 10, 2000, pp. 4844-4850. doi:10.1021/jf000514h
[17] D. Janes, D. Kantar, S. Kreft and H. Prosen, “Identification of Buckwheat (Fagopyrum Esculentum Moench) Aroma Compounds with GC-MS,” Food Chemistry, Vol. 112, No. 1, 2009, pp. 120-124. doi:10.1016/j.foodchem.2008.05.048
[18] R. Cong, R. Pelton, P. Russo and G. Doucet, “Factors Affecting the Size of Aqueous Poly (Vinylphenol-co-Po- tassium Styrenesulfonate)/Poly(Ethylene Oxide) Complexes,” Macromolecules, Vol. 36, No. 1, 2002, pp. 204- 209. doi:10.1021/ma020965y
[19] S. N. Aslam, P. C. Stevenson, S. J. Phythian, N. C. Veitch and D. R. Hall, “Synthesis of Cicerfuran, an Antifungal Benzofuran, and Some Related Analogues,” Tetrahedron, Vol. 62, No. 17, 2006, pp. 4214-4226. doi:10.1016/j.tet.2006.02.015
[20] E. Bermúdez, O. N. Ventura and P. Saenz Méndez, “Mechanism of the Organocatalyzed Decarboxylative Knoevenagel-Doebner Reaction. A Theoretical Study,” The Journal of Physical Chemistry A, Vol. 114, No. 50, 2010, pp. 13086-13092. doi:10.1021/jp109703f
[21] M. Takemoto and K. Achiwa, “Synthesis of Styrenes through the Decarboxylation of Trans-Cinnamic Acids by Plant Cell Cultures,” Tetrahedron Letters, Vol. 40, 1999, pp. 6595-6598. doi:10.1016/S0040-4039(99)01281-2
[22] K. Zeitler and C. A. Rose, “An Efficient Carbene-Ca- talyzed Access to 3,4-Dihydrocoumarins,” The Journal of Organic Chemistry, Vol. 74, No. 4, 2009, pp. 1759-1762. doi:10.1021/jo802285r
[23] P. K. Upadhyay and P. Kumar, “A Novel Synthesis of Coumarins Employing Triphenyl([Alpha]-Carboxymethy- lene)Phosphorane Imidazolide as a C-2 Synthon,” Tetrahedron Letters, Vol. 50, No. 2, 2009, pp. 236-238. doi:10.1016/j.tetlet.2008.10.133
[24] G. P. Rizzi and L. J. Boekley, “Observation of Ether- Linked Phenolic Products during Thermal Degradation of Ferulic Acid in the Presence of Alcohols,” Journal of Agricultural and Food Chemistry, Vol. 40, No. 9, 1992, pp. 1666-1670. doi:10.1021/jf00021a037
[25] Q. Zhou and K. D. Turnbull, “Phosphodiester Alkylation with a Quinone Methide,” The Journal of Organic Chemistry, Vol. 64, No. 8, 1999, pp. 2847-2851. doi:10.1021/jo9823745
[26] R. W. Van De Water and T. R. R. Pettus, “O-Quinones Methides: Intermediates Underdeveloped and Underutilized in Organic Synthesis,” Tetrahedron, Vol. 58, 2002, pp. 5367-5405. doi:10.1016/S0040-4020(02)00496-9
[27] G. Bouchoux, “Heats of Formation and Protonation Thermochemistry of Gaseous Benzaldehyde, Tropone and Quinone Methides,” Chemical Physics Letters, Vol. 495, No. 4-6, 2010, pp. 192-197. doi:10.1016/j.cplett.2010.07.008
[28] F. Woehrlin, H. Fry, K. Abraham and A. Preiss-Weigert, “Quantification of Flavoring Constituents in Cinnamon: High Variation of Coumarin in Cassia Bark from the German Retail Market and in Authentic Samples from Indonesia,” Journal of Agricultural and Food Chemistry, Vol. 58, 2010, pp. 10568-10575. doi:10.1021/jf102112p
[29] B. List, “Proline-Catalyzed Asymmetric Reactions,” Tetrahedron, Vol. 58, 2002, pp. 5573-5590. doi:10.1016/S0040-4020(02)00516-1
[30] S. M. Fleming, T. A. Robertson, G. J. Langley and T. D. H. Bugg, “Catalytic Mechanism of a C-C Hydrolase Enzyme: Evidence for a Gem-Diol Intermediate, Not an Acyl Enzyme,” Biochemistry, Vol. 39, No. 6, 2000, pp. 1522- 1531. doi:10.1021/bi9923095
[31] S. Coghe, K. Benoot, F. Delvaux, B. Vanderhaegen and F. R. Delvaux, “Ferulic Acid Release and 4-Vinylguaiacol Formation during Brewing and Fermentation: Indications for Feruloyl Esterase Activity in Saccharomyces Cerevisiae,” Journal of Agricultural and Food Chemistry, Vol. 52, No. 3, 2004, pp. 602-608. doi:10.1021/jf0346556
[32] N. Vanbeneden, F. Gils, F. Delvaux and F. R. Delvaux, “Formation of 4-Vinyl and 4-Ethyl Derivatives from Hydroxycinnamic Acids: Occurrence of Volatile Phenolic Flavour Compounds in Beer and Distribution of Pad1- Activity among Brewing Yeasts,” Food Chemistry, Vol. 107, No. 1, 2008, pp. 221-230. doi:10.1016/j.foodchem.2007.08.008
[33] L. Du and P. Yu, “Effect of Barley Variety and Growth Year on Ferulic and Para-Coumaric Acids, and Their Ration in the Seed and Hull,” Cereal Research Communications, Vol. 38, No. 4, 2010, pp. 521-532. doi:10.1556/CRC.38.2010.4.9
[34] L. Szabados and A. Savouré, “Proline: A Multifunctional Amino Acid,” Trends in Plant Science, Vol. 15, 2009, pp. 89-97. doi:10.1016/j.tplants.2009.11.009
[35] D. R. Lide, “CRC Handbook of Chemistry and Physics,” CRC Press, Boca Raton, 2003-2004.
[36] B. B. Corson, J. Dorsky, J. E. Nickels, W. M. Kutz and H. I. Thayer, “Dimerization of Styrene in the Presence and Absence of Solvent,” The Journal of Organic Chemistry, Vol. 19, No. 1, 1954, pp. 17-26. doi:10.1021/jo01366a004
[37] M. J. Rosen, “Studies of the Dimerization of Styrene in Aqueous Sulfuric Acid,” The Journal of Organic Chemistry, Vol. 18, No. 12, 1953, pp. 1701-1705. doi:10.1021/jo50018a012
[38] B. B. Corson, W. J. Heintzelman, H. Moe and C. R. Rousseau, “Reactions of Styrene Dimers,” The Journal of Organic Chemistry, Vol. 27, No. 5, 1962, pp. 1636-1640. doi:10.1021/jo01052a036
[39] T. Higashimura, M. Hiza and H. Hasegawa, “Catalytic Difference between Oxo Acids and Metal Halides in the Cationic Oligomerization of Styrene,” Macromolecules, Vol. 12, No. 2, 1979, pp. 217-222. doi:10.1021/ma60068a010
[40] J. Peng, J. Li, H. Qiu, J. Jiang, K. Jiang, J. Mao and G. Lai, “Dimerization of Styrene to 1,3-Diphenyl-1-butene Catalyzed by Palladium-Lewis Acid in Ionic Liquid,” Journal of Molecular Catalysis A: Chemical, Vol. 255, No. 1-2, 2006, pp. 16-18. doi:10.1016/j.molcata.2006.03.058
[41] B. Fallico, M. C. Lanza, E. Maccarone, C. Nicolosi Asmundo and P. Rapisarda, “Role of Hydroxycinnamic Acids and Vinylphenols in the Flavor Alteration of Blood Orange Juices,” Journal of Agricultural and Food Chemistry, Vol. 44, No. 9, 1996, pp. 2654-2657. doi:10.1021/jf9503319

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.