Contrast enhancement methods in sodium MR imaging: a new emerging technique
Rakesh Sharma, Avdhesh Sharma, Soonjo Kwon, Ross Booth
DOI: 10.4236/jbise.2009.26065   PDF   HTML     4,536 Downloads   8,996 Views   Citations


Background: In the last decade, sodium mag-netic resonance imaging was investigated for its potential as a functional cardiac imaging tool for ischemia. Later interest was developed in contrast enhancement for intracellular sodium. Little success was reported to suppress extracellular sodium resulting in the intracellular sodium MRI image acquisition using quantum filters or sodium transition states as contrast properties. Now its clinical application is ex-panding as a new challenge in brain and other cancer tumors. Contrast enhancement: We highlight the physical principles of sodium MRI in three different pulse sequences using filters (single quantum, multiple quantum, and triple quantum) meant for sodium contrast enhancement. The optimization of scan parameters, i.e. times of echo delay (TE), inversion recovery (TI) periods, and utility of Dysprosium (DyPPP) shift contrast agents, enhances contrast in sodium MRI images. Inversion recovery pulse sequence without any shift reagent measures the intracellular sodium concentration to evaluate ischemia, apoptosis and membrane integrity. Membrane integrity loss, apoptosis and malignancy are results of growth factor loss and poor epithelial capability related with MRI visible intracellular sodium concentration. Applications and limitations: The sodium MR imaging technical advances reduced scan time to distinguish intracellular and extracellular sodium signals in malignant tumors by use of quantum filter techniques to generate 3D sodium images without shift regents. We observed the association of malignancy with increased TSC, and reduced apoptosis and epithelial growth factor in breast cancer cells. The validity is still in question. Conclusion: Different modified sodium MRI pulse sequences are research tools of sodium contrast enhancement in brain, cardiac and tumor imaging. The optimized MRI scan pa-rameters in quantum filter techniques generate contrast in intracellular sodium MR images without using invasive contrast shift agents. Still, validity and clinical utility are in questi

Share and Cite:

Sharma, R. , Sharma, A. , Kwon, S. and Booth, R. (2009) Contrast enhancement methods in sodium MR imaging: a new emerging technique. Journal of Biomedical Science and Engineering, 2, 445-457. doi: 10.4236/jbise.2009.26065.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] I. L. Cameron, N. K. Smith, T. B. Pool, and R. L. Sparks, (1980) Intracellular concentration of sodium and other ele-ments as related to mutagenesis and oncogenesis in vivo, Can-cer Res., 40(5), 1493–500.
[2] A. Amidsen and M. Schou, (1968) Lithium and the transfer rate of sodium across the blood-brain barrier, Psychopharma-cologia, 12(3), 236–238.
[3] B. J. Carroll, L. Steven, R. A. Pope, and B. Davies, (1969) Sodium transfer from plasma to CSF in severe depressive ill-ness, Arch. Gen. Psychiatry, 21(1), 77–81.
[4] M. E. Moseley, W. M. Chew, M. C. Nishimura, T. L. Richards, J. Murphy-Boesch, G. B. Young, T. M. Marschner, L. H. Pitts, and T. L. James, (1985) In vivo sodium-23 magnetic resonance surface coil imaging: Observing experimental cerebral ische-mia in the rat, Magn. Reson. Imaging, 3(4), 383–387.
[5] W. H. Perman, P. A. Turski, L. W., Houston, G. H. Glover, and C. E. Hayes, (1986) Methodology of in vivo human sodium MR imaging at 1.5 T, Radiology, 160(3), 811–820.
[6] S. S. Winkler, D. M. Thomasson, K. Sherwood, and W. H. Perman, (1989) Regional T2 and sodium concentration esti-mates in the normal human brain by sodium-23 MR imaging at 1.5 T, J. Comput. Assist. Tomogr., 13(4), 561– 566.
[7] J. M. Dizon, J. S. Tauskela, D. Wise, D. Burkhoff, P. J. Cannon, and J. Katz, (1996) Evaluation of triplequantum-filtered 23Na NMR in monitoring of Intracellular Na content in the perfused rat heart: comparison of intra- and extracellular transverse relaxation and spectral amplitudes, Magn. Reson. Med., 35(3), 336–345.
[8] K. J. Jung and J. Katz, (1996) Chemical-shift-selective acquisi-tion of multiple-quantum-filtered 23Na signal, J. Magn. Reson. B., 112(3), 214–227.
[9] P. G. Morris, (1986) Nuclear magnetic resonance imaging in medicine and biology, Clarendon Press, Oxford, England, 123.
[10] S. W. Lee, S. K. Hilal, and Z. H. Cho, (1986) A multinuclear magnetic resonance imaging technique-simultane- ous proton and sodium imaging, Magn. Reson. Imaging, 4(4), 343–350.
[11] P. J. Cannon, A. A. Maudsley, S. K. Hilal, H. E. Simon, and F. Cassidy, (1986) Sodium nuclear magnetic resonance imaging of myocardial tissue of dogs after coronary artery occlusion and reperfusion, J. Am. Coll. Cardiol., 7(3), 573–579.
[12] C. T. Moonen, S. E. Anderson, and S. Unger, (1987) 23Na rotating frame imaging in the perfused rabbit heart using sepa-rate transmitter and receiver coils, Magn. Reson. Med., 5(3), 296–301.
[13] R. Ouwerkerk, K. B. Bleich, J. S. Gillen, M. G. Pomper, and P. A. Bottomley, (2003) Tissue sodium concentration in human brain tumors as measured with 23Na MR imaging. Radiology, 227(2), 529–3.
[14] F. E. Boada, G. X. Shen, S. Y. Chang, and K. R. Thulborn, (1997) Spectrally weighted twisted projection imaging: reduc-ing T2 signal attenuation effects in fast three-dimensional so-dium imaging, Magn. Reson. Med., 38(6), 1022–1028.
[15] I. Hancu, F. E. Boada, and G. X. Shen, (1999) Three- dimen-sional triple-quantum-filtered (23)Na imaging of in vivo hu-man brain, Magn. Reson. Med., 42(6), 1146– 1154.
[16] A. Borthakur, I. Hancu, F. E. Boada, G. X. Shen, E. M. Shapiro, and R. Reddy, (1999) In vivo triple quantum filtered twisted projection sodium MRI of human articular cartilage, J. Magn. Reson., 141(2), 286–290.
[17] K. J. Jung, P. J. Cannon, and J. Katz, (1997) Simultaneous acquisition of quadrupolar order and doublequantum 23Na signals, J. Magn. Reson., 129(2), 130–133.
[18] L. M. Boxt, D. Hsu, J. Katz, P. Detweiler, S. McLaughlin, T. J. Kolb, and H. M. Spotnitz, (1993) Estimation of myocardial water content using transverse relaxation time from dual spin-echo magnetic resonance imaging, Magn. Reson. Imaging, 11(3), 375–383.
[19] G. X. Shen, J. F. Wu, F. E. Boada, and K. R. Thulborn, (1999) Experimentally verified, theoretical design of dual-tuned, low-pass birdcage radiofrequency resonators for magnetic resonance imaging and magnetic resonance spectroscopy of human brain at 3.0 Tesla, Magn. Reson. Med., 41(2), 68–275.
[20] K. J. Jung, J. Katz, L. M. Box, S. K. Hilal, and Z. H. Cho, (1995) Breakthrough of single-quantum coherence and its elimination in double-quantum filtering, J. Magn. Reson. B., 107(3), 235–241.
[21] K. J. Jung, J. S. Tauskela, and J. Katz, (1996) New dou-ble-quantum filtering schemes, J. Magn. Reson. B., 112(2), 103–110.
[22] K. J. Jung and J. Katz, (1997) Mathematical analysis of gen-eration and elimination of intersequence stimulated echo in double-quantum filtering, J. Magn. Reson., 124 (1), 232–236.
[23] J. S. Tauskela, J. M. Dizon, J. Whang, and J. Katz, (1997) Evaluation of multiple-quantum-filtered 23Na NMR in moni-toring intracellular Na content in the isolated perfused rat heart in the absence of a hemical-shift reagent, J. Magn. Reson., 127(1), 115–127.
[24] V. A. Stenger, S. Peltier, F. E. Boada, and D. C. Noll, (1999) 3D spiral cardiac/respiratory ordered fMRI data acquisition at 3 Tesla, Magn. Reson. Med., 41(5), 983– 991.
[25] H. Serrai, A. Borthakur, L. Senhadji, and R. Reddy, (2000) Bansal, N. Time-domain quantification of multi-ple-quantum-filtered (23)Na signal using continuous wavelet transform analysis, J. Magn. Reson. 142(2), 341–347.
[26] J. B. Ra, S. K. Hilal, C. H. Oh, and I. K. Mun, (1988) In vivo magnetic resonance imaging of sodium in the human body. Magn Reson Med., 7(1), 11–22.
[27] S. K. Hilal, A. A. Maudsley, J. B. Ra, H. E. Simon, P. Roschmann, S. Wittekoek, Z. H. Cho, and S. K. Mun, (1985) In vivo NMR imaging of sodium-23 in the human head, J Comput Assist Tomogr, 9 (1), 1–7.
[28] T. Hashimoto, H. Ikehira, H. Fukuda, A. Yamaura, O. Wata-nabe, Y. Tateno, R. Tanaka, and H. E. Simon, (1991) In vivo sodium-23 MRI in brain tumors: Evaluation of preliminary clinical experience, Am J Physiol Imaging, 6(2), 74–80.
[29] K. L. Allen, A. L. Busza, S. R. Williams, and S. C. Williams (1994) Early changes in cerebral sodium distribution following ischaemia monitored by 23Na magnetic resonance imaging, Magn Reson Imaging, 12(6), 895– 900.
[30] R. Sharma and R. P. Kline, (2004) Chemosensitivity assay in mice prostate tumor: Preliminary report of flow cytometry, DNA fragmentation, ion ratiometric methods of anti-neoplastic drug monitoring. Cancer Cell International Cancer Cell Inter-national, 4(3).
[31] R. P. Kline, E. X. Wu, D. P. Petrylak, M. Szabolcs, P. O. Al-derson, M. L. Weisfeldt, P. Cannon, and J. Katz, (2000) Rapid in vivo monitoring of chemotherapeutic response using weighted sodium magnetic resonance imaging, Clin Cancer Res., 6(6), 2146–56.
[32] P. M. Winter, V. Seshan, J. D. Makos, A. D. Sherry, C. R. Malloy, and N. Bansal, (1998) Quantitation of intracellular [Na+] in vivo by using TmDOTP5-as an NMR shift reagent and extracellular marker, J Appl Physiol. 85(5), 1806–12.
[33] P. M. Winter, H. Poptani, and N. Bansal, (2001) Effects of chemotherapy by 1,3-bis(2-chloroethyl)-1-nitrosourea on sin-gle-quantum- and triple-quantum-filtered 23Na and 31P nu-clear magnetic resonance of the subcutaneously implanted 9L glioma, Cancer Res., 61(5).
[34] J. M. Colet, N. Bansal, C. R. Malloy, and A. D. Sherry, (1999) Multiple quantum filtered 23Na NMR spectroscopy of the isolated, perfused rat liver, Magn Reson Med. 41(6), 1127–35.
[35] R. Sharma, R. P. Kline, E. X. Wu, and J. K. Katz, (2005) Rapid in vivo Taxotere quantitative chemosensitivity response by 4.23 Tesla sodium MRI and histo-immunostaining features in N-Methyl-N-Nitrosourea induced breast tumors in rats, Cancer Cell International, 5, 26.
[36] R. Sharma, (2008) Extended expression for transverse mag-netization using four pulse sequence to construct double quan-tum filter of arbitrary phases for spin 3/2 sodium nuclei, Inter-national J. Computer Research, 16(4), 371–388.
[37] R. Ouwerkerk, M. A. Jacobs, K. J. Macura, A. C. Wolff, V. Stearns, and S. D. Mezban, N. F. Khouri, D. A. Bluemke, and P. A. Bottomley, (2007) Elevated tissue sodium concentration in malignant breast lesions detected with non-invasive 23Na MRI, Breast Cancer Research and Treatment, 106(2), 151–60.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.