Operator Splitting Method for Coupled Problems:Transport and Maxwell Equations
Jürgen Geiser
DOI: 10.4236/ajcm.2011.13019   PDF   HTML     4,323 Downloads   8,707 Views   Citations


In this article a new approach is considered for implementing operator splitting methods for transport problems, influenced by electric fields. Our motivation came to model PE-CVD (plasma-enhanced chemical vapor deposition) processes, means the flow of species to a gas-phase, which are influenced by an electric field. Such a field we can model by wave equations. The main contributions are to improve the standard discretization schemes of each part of the coupling equation. So we discuss an improvement with implicit Runge- Kutta methods instead of the Yee’s algorithm. Further we balance the solver method between the Maxwell and Transport equation.

Share and Cite:

J. Geiser, "Operator Splitting Method for Coupled Problems:Transport and Maxwell Equations," American Journal of Computational Mathematics, Vol. 1 No. 3, 2011, pp. 163-175. doi: 10.4236/ajcm.2011.13019.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. Ohring, “Materials Science of Thin Films,” 2nd Edition, Academic Press, San Diego, New York, Boston, London, 2002.
[2] J. Geiser and M. Arab, “Simulation of a Chemical Vapor Deposition: Mobile and Immobile Zones and Homogeneous Layers,” Journal of Porous Media, Begell House Inc., Redding, 2009, Vol. 1, No. 2, pp. 123-143.
[3] L. Rudniak, “Numerical Simulation of Chemical Vapour Deposition Process in Electric Field,” Computers & Chemical Engineering, Vol. 22, Supplement 1, 1998, pp. 755-758.
[4] J. Van Roey, J. van der Donk and P. E. Lagasse, “Beam-Propagation Method: Analysis and Assessment,” Journal of the Optical Society of America, Vol. 71, No. 7, 1981, pp. 803-810. doi:10.1364/JOSA.71.000803
[5] M. D. Feit and J. A. Fleck Jr., “Analysis of Rib Waveguides and Couplers by the Propa-gating Beam Method,” Journal of the Optical Society of America A, Vol. 7, No. 1, 1990, pp. 73-79. doi:10.1364/JOSAA.7.000073
[6] M. D. Feit and J. A. Fleck Jr., “Light Propagation in Graded-Index Optical Fibers,” OSA Applied Optics, Vol. 17, No. 24, 1978, pp. 3990- 3998. doi:10.1364/AO.17.003990
[7] L. Thylen, E. M. Wright, G. I. Stegeman, C. T. Seaton and J. V. Moloney, “Beam-Propagation Method Analysis of a Nonlinear Directional Coupler,” OSA Optics Letters, Vol. 11, No. 11, 1986, pp. 739-741. doi:10.1364/OL.11.000739
[8] J. A. Fleck, J. R. Morris Jr. and M. D. Feit, “Time-dependent Propagation of High Energy Laser Beams through the Atmosphere,” Applied Physics, Vol. 10, No. 2, 1976, pp. 129-160. doi:10.1007/BF00896333
[9] M. Lax, J. H. Batteh and G. P. Agrawai, “Channeling of Intense Electromagnetic Beams,” Journal of Applied Physics, Vol. 51, No. 1, 1981, pp. 109-125. doi:10.1063/1.328442
[10] G. I. Marchuk, “Some Applications of Splitting-up Methods to the Solution of Mathematical Physics Problems,” Aplikace Matematiky, Vol. 1, 1968, pp. 103-132.
[11] G. Strang, “On the Constraction and Comparion of Difference Schemes,” SIAM J. Numerical Analysis, Vol. 5, No. 3, 1968, pp. 506-517. doi:10.1137/0705041
[12] K. Okamoto, “Fundamentals of Optical Waveguides,” Academic Press, New York, 2005.
[13] A Taflove, “Computational Electrodynamics: The Finite Difference Time Domain Method,” Arctech House Inc., 1995.
[14] J. P. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” J. Comp. Phys., Vol. 111, 2005, pp. 185-220.
[15] S. D. Gedney, “An Anisotropic Perfectly Matched Layer-Absorbing Medium for the Truncation of Fdtd Lattices,” IEEE Tran. Ant. Prop., Vol. 44, No. 12, 1996, pp. 1630-1639.
[16] W. Sha, X. Wu, M. Chen and Z. Huang, “Application of the High-Order Symplectic Fdtd Scheme to the Curved Three-Dimensional Perfectly Conducting Objects,”
[17] T. Hirono, W. Lui, S. Seki and Y. Yoshikuni, “A Three- Dimensional Fourth-Order Finite-Difference Time-Domain Scheme Using a Symplectic Integrator Propagator,”
[18] J. Geiser, “Numerical Simulation of a Model for Transport and Reaction of Radionuclides, 2001,” Proceedings of the Large Scale Scientific Computations of Engineering and Environmental Problems, Sozopol, 2001.
[19] W. Hackbusch, “Iterative Losung Groser Schwa-chbesetzter Gleichungssysteme,” Teubner-Verlag, Stuttgart, 1993.
[20] I. Farago and J. Geiser, “Iterative Operator-Splitting Methods for Linear Problems,” International Journal of Computational Science and Engineering, Vol. 3, No. 4, 2007, pp. 255-263.
[21] J. Kanney, C. Miller and C. Kelley, “Convergence of Iterative Split-Operator Approaches for Ap-proximating Nonlinear Reactive Transport Problems,” Advances in Water Resources, Vol. 26, 2003, pp. 247-261. doi:10.1016/S0309-1708(02)00162-8
[22] J. Geiser, “Weighted Iterative Operator-Splitting Methods: Stability-Theory,” Proceedings of the 6th International Conference, NMA 2006, Lecture Notes in Computer Science, Springer, Berlin, Vol. 4310, 2007, pp. 40-47.
[23] W. H. Hundsdorfer and J. G. Verwer, “Numerical Solution of Time-Dependent Advection-Diffusionreaction Equations,” Springer, Berlin, 2003.
[24] J. Geiser, “Iterative Operator-Splitting Methods with Higher Order Time-Integration Methods and Applications for Parabolic Partial Differential Equations,” Journal of Com-putational and Applied Mathematics, Elsevier, Amsterdam, Vol. 217, 2008, pp. 227-242.
[25] E. Zeidler, “Nonlinear Functional Analysis and Its Applications II/B: Nonlinear Montone Opera-tors,” Springer- Verlag, Berlin-Heidelberg-New York, 1990.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.