Share This Article:

Preventive effect of Catharanthus roseus (Linn.) against high-fructose diet-induced insulin resistance and oxida-tive stress in male Wistar rats

Abstract Full-Text HTML Download Download as PDF (Size:196KB) PP. 63-70
DOI: 10.4236/jdm.2011.13010    4,064 Downloads   8,532 Views   Citations


High intake of dietary fructose has been shown to exert a number of adverse metabolic effects in humans and experimental animals. The aim of the present study was to investigate whether Catharanthus roseus (L.) G. Don (Apocynaceae) leaf powder alleviates high-fructose diet-induced insulin resistance and oxidative stress in rats. Adult male Wistar rats of body weight around 200 g were divided into four groups, two of which were fed with standard pellet diet and the other two with high fructose (66%) diet. C. roseus leaf powder suspension in water (100 mg/kg body weight/day) was administered orally to each group of the standard pellet diet fed rats and the high fructose diet fed rats for 60 days. Fructose fed rats (F-group) showed hyperglycemia, hyperinsulinemia, insulin resistance and hyperlipidemia (P < 0.05). C. roseus treatment in fructose fed rats (F+CR-group) prevented the rise in glucose levels by 32.2%, insulin by 46.4%, and impaired insulin sensitivity by 63.6%. C. roseus treatment completely prevented the fructose induced plasma lipid alterations. Regarding liver antioxidant status, oxidative stress was observed in fructose fed rats (F-group), while C. roseus treatment in F+CR-group prevented the fructose induced oxidative stress. Our data indicate the preventive role of C. roseus against fructose-induced insulin resistance and oxidative stress; hence this plant can be used as an adjuvant for the prevention and/or management of insulin resistance and disorders related to it.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Rasineni, K. and Desireddy, S. (2011) Preventive effect of Catharanthus roseus (Linn.) against high-fructose diet-induced insulin resistance and oxida-tive stress in male Wistar rats. Journal of Diabetes Mellitus, 1, 63-70. doi: 10.4236/jdm.2011.13010.


[1] Bray, G.A., Nielsen, S.J. and Popkin, B.M. (2004) Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. American Journal of Clinical Nutrition, 9, 537-543.
[2] Gaby, A.R. (2005) Adverse effects of dietary fructose. Alternative Medicine Review, 10, 294-306.
[3] Tordoff, M.G. and Alleva, A.M. (1990) Effect of drinking soda sweetened with aspartame or high-fructose corn syrup on food intake and body weight. American Journal of Clinical Nutrition, 51, 963-969.
[4] Thorburn, A.W., Storlein, L.H., Jemkins, A.B., Khouri, S. and Kraegen, E.W. (1989) Fructose induced in vivo insulin resistance and elevated plasma triglyceride levels in rats. American Journal of Clinical Nutrition, 49, 1155- 1163.
[5] Reddy, S.S., Karuna, R., Baskar, R. and Saralakumari, D. (2008) Prevention of insulin resistance by ingesting aqueous extract of Ocimum sanctum to fructose-fed rats. Hormone and Metabolic Research, 40, 44-49. doi:10.1055/s-2007-993218
[6] Reaven, G.M. and Banting, L. (1988) Role of insulin resistance in human disease. Diabetes, 37, 1595-1607. doi:10.2337/diabetes.37.12.1595
[7] Faure, P., Rossini, E., Wiernsperger, N., Richard, M.J., Favier, A. and Halimi, S. (1999) An insulin sensitizer improves the free radical defense system potential and insulin sensitivity in high fructose-fed rats. Diabetes, 48, 353-357. doi:10.2337/diabetes.48.2.353
[8] Faure, P., Rossini, E., Lafond, J.L., Richard, M.J., Favier, A. and Halimi, S. (1997) Vitamin E improves the free radical defense system potential and insulin sensitivity of rats fed high fructose diets. Journal of Nutrition, 127, 103-107.
[9] Hollenberg, N.K. (2003) Considerations for management of fluid dynamic issues associated with thiazolidine- diones. American journal of medicine, 115, S111-S115. doi:10.1016/j.amjmed.2003.09.018
[10] Ozgen, U., Turkoz, Y., Stout, M., Ozugurlu, F., Pelik, F., Bulut, Y., Aslan, M., Ravindranath, Y. and Savasan, S. (2003) Degradation of vincristine by myeloperoxidase and hypochlorous acid in children with acute lymphoblastic leukemia. Leukocyte Research, 27, 1109-1113. doi:10.1016/S0145-2126(03)00098-5
[11] Nayak, B.S., Lexley, M. and Pinto, P. (2006) Catharanthus roseus flower extract has wound-healing activity in Sprague Dawley rats. BMC Complementary and Alternative Medicine, 6, 1-6. doi:10.1186/1472-6882-6-1
[12] Karuna, R., Ramesh, B., Sreenivasa, S. and Saralakumari, D. (2010) Antihyperglycemic activity of Catharanthus roseus leaf powder in streptozotocin-induced diabetic rats. Pharmacognosy Research, 2, 195-201.
[13] Nammi, S., Boini, M.K., Lodgala, S. and Behara, R.B.S. (2003) The fresh leaves of Catharanthus roseus Linn. Reduces blood glucose in normal and alloxan diabetic rabbits. BMC Complementary and Alternative Medicine, 2, 3-4.
[14] Chattopadhya, R.R. (1999) A comparative evaluation of some blood glucose lowering agents of plant origin. Journal of Ethanopharmacology, 67, 367-369. doi:10.1016/S0378-8741(99)00095-1
[15] Fazil, M.A., Mohammed, S.K., Safiullah, S.G., Sughra, S.M., Rasheed, S.A., Mehboob, S.A. and Ibrahim, M. (2010) Antidiabetic Activity of Vinca rosea Extracts in Alloxan-Induced Diabetic Rats. International Journal of Endocrinology, 1-6.
[16] Singh, S.N., Vats, P., Suri, S., Shyam, R., Kumari, M.M., Ranganathan, S. and Sridharan, K. (2001) Effect of an antidiabetic extract of a Catharanthus roseus on enzymatic activities in streptozotocin induced diabetic rats. Journal of Ethanopharmacology, 76, 269-277. doi:10.1016/S0378-8741(01)00254-9
[17] Rau, O., Wurglics, M., Dingermann, T., Abdel-Tawab, M. and Schubert-Zsilavecz, M. (2006) Screening of herbal extracts for activation of the human peroxisome proliferator-activated receptor. Pharmazie, 61, 952-956.
[18] Antia, B.S. and Okokon, J.E. (2005) Effect of leaf juice of Catharnathus roseus Linn on cholesterol, triglyceride and lipoproteins levels in normal rats. Indian Journal of Pharmacology, 37, 401-402.
[19] Yalow, R.S. and Berson, S.A. (1961) Immunoassay of plasma insulin in man. Diabetes, 10, 339.
[20] Pickavance, L.C., Tadayyon, M., Widdowson, P.S., Buck- ingham, R.E. and Wilding, J.P.H. (1999) Therapeutic index for rosiglitazone in dietary obese rats. Separation of efficacy and haemodiluation. British Journal of Pharmacology, 128, 1570-1576. doi:10.1038/sj.bjp.0702932
[21] Utley, H.G, Bernheim, F. and Hochstein, P. (1967) Effect of sulfhydryl reagents on peroxidation in microsomes. Archives of Biochemistry and Biophysics, 118, 29-32. doi:10.1016/0003-9861(67)90273-1
[22] Levine, R.L., Garland, D., Oliver, C.N., Amici, A., Climent, I., Lenz, A.G., Ahn, B.W., Shaltiel, S. and Stadtman, E,R. (1990) Determination of carbonyl content in oxidatively modified proteins. Methods in Enzymology, 186, 464-478. doi:10.1016/0076-6879(90)86141-H
[23] Ellman, G.L. (1959) Tissue sulphydryl. Archives of Biochemistry Biophysics, 82, 70-77. doi:10.1016/0003-9861(59)90090-6
[24] Lowry, O.H., Rosenbrough, N.J., Farr, A.L. and Randall, R.J. (1951) Protein measurement with the folin’s-phenol reagent. Journal of Biological Chemistry, 193, 265-275.
[25] Soon, Y.Y. and Tan, B.K.H. (2002) Evaluation of the hypoglycemic and antioxidant activities of Morinda officinalis in streptozotocin-induced diabetic rats. Singapore Medical Journal, 43, 77-85.
[26] Beers, R.F. and Sizer, J.W. (1952) Spectrophotometric method for measuring breakdown of hydrogen peroxide catalase. Journal of Biological Chemistry, 195, 133-140.
[27] Rotsruck, J.T., Pope, A.L., Ganther, H.E., Swanson, A.B., Hafeman, D.G. and Hoekstra, W.G. (1973) Slenium: Biochemical role as a component of glutathione peroxidase. Science, 179, 588-590. doi:10.1126/science.179.4073.588
[28] Habig, W.H., Pabst, M.J. and Jakoby, W.B. (1974) Glutathione-S-transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249, 7130-7139.
[29] Pinto, R.E. and Bartley, W. (1969) The effect of age and sex on glutathione reductase and glutathione peroxidase activities and on aerobic glutathione oxidation in rat liver homogenates. Biochemical Journal, 112, 109-115.
[30] Goldstein, B.J. (2002) Insulin resistance as the core defect in type 2 diabetes mellitus. American Jornal of Cardiology, 90, 3-10. doi:10.1016/S0002-9149(02)02553-5
[31] Kaiyala, K.J., Prigeon, R.L., Kahn, S.E., Woods, S.C. and Schwartz, M.W. (2000) Obesity induced by a high rat diet is associated with reduced brain insulin transport in dogs. Diabetes, 49, 1525-1533. doi:10.2337/diabetes.49.9.1525
[32] Vos, P.D.E., Lefebvre, A.M., Miller, S.G., Guerre-Millo, M., Wong, K., Saladin, R., Hamann, L.G., Staels, B., Briggs, M.R. and Auwerx, J. (1996) Thiozolidinediones repress ob gene expression in rodents via activation of peroxisome proliferators-activated receptor gamma. Journal of Clinical Investigation, 98, 1004-1009. doi:10.1172/JCI118860
[33] Randle, T.J. (1998) Regulatory interactions between lipids and carbohydrates: The glucose fatty acid cycle after 35 years. Diabetes Metabolism Review, 14, 263-283. doi:10.1002/(SICI)1099-0895(199812)14:4<263::AID-DMR233>3.0.CO;2-C
[34] Kelly, G.L., Allan, G. and Azhar, S. (2004) High dietary fructose induces a hepatic stress response resulting in cholesterol and lipid dysregulation. Endocrinology, 145, 548-555. doi:10.1210/en.2003-1167
[35] Evans, J.L., Goldfine, I.D., Maddux, B.A. and Grodsky, G.M. (2003) Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes, 52, 1-8. doi:10.2337/diabetes.52.1.1
[36] Itani, S.I., Ruderman, N.B., Schmieder, F. and Boden, G. (2005) Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein-kinaseC, and IB-alpha. Diabetes, 51, 2005-2011. doi:10.2337/diabetes.51.7.2005
[37] Kocic, R., Pavlovic, D., Kocic, G. and Pesic, M. (2007) Susceptibility to oxidative stress, insulin resistance, and insulin secretory response in the development of diabetes from obesity. Vojnosanitetski Pregled, 64, 391-397.
[38] Ceriello, A., Giugliano, D., Quatraro, A., Donzella, C., Dipalo, G. and Lefebvre, P.J. (1991) Vitamin E reduction of protein glycosylation in diabetes: New prospect for prevention of diabetic complications? Diabetes Care, 14, 68-72. doi:10.2337/diacare.14.1.68
[39] Datta, K., Sinha, S. and Chattopadhyay, P. (2000) Reactive oxygen species in health and diseases. National Medical Journal of India, 13, 304-310.
[40] Evans, J.L. and Goldfine, I.D. (2000) α-Lipoic acid: A multi-functional antioxidant that improves insulin sensitivity in patients with type 2 diabetes. Diabetes Technology and Therapeutics, 2, 401-413. doi:10.1089/15209150050194279

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.