Thermal Degradation Studies of Some Strongly Acidic Cation Exchange Resins

Abstract

The thermal degradation of some sulfonic cationites namely Amberlite IR-120, Indion-223 and In-dion-225 was investigated using instrumental techniques like thermal analysis (TG) and Scanning Electron Microscopy (SEM). Fourier Transform Infrared Spectroscopy (FTIR) was used to characterize the resins degradation steps. The sulfonic cationites undergo degradation through dehydration, followed by decomposition of sulfonic acid functional groups liberating SO2. The thermogravimetric analysis of above cationites at higher temperature up to 520oC, show mass loss of 61.61% and 25.43% respectively for Indion-223 and Indion-225, while Amberlite IR-120 cationite get burned off completely.

Share and Cite:

P. Singare, R. Lokhande and R. Madyal, "Thermal Degradation Studies of Some Strongly Acidic Cation Exchange Resins," Open Journal of Physical Chemistry, Vol. 1 No. 2, 2011, pp. 45-54. doi: 10.4236/ojpc.2011.12007.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. Lokhande and P. Singare, “Comparative Study on Iodide and Bromide Ion-Isotopic Exchange Reactions by Application of Radioactive Tracer Technique,” Journal of Porous Material, Vol.15, No. 3, 2008, pp. 253-258. doi:10.1007/s10934-006-9077-z
[2] R. Lokhande, P. Singare and A. Patil, “Application of Radioactive Tracer Technique on Industrial Grade Ion Exchange Resins Indion-830 (Type-1) and Indion-N-IP (Type-2),” Radiochimica Acta, Vol. 95, No.1, 2007, pp. 111-114. doi:10.1524/ract.2007.95.2.111
[3] R. Lokhande and P. Singare, “Comparative Study on Ion-Isotopic Exchange Reaction Kinetics by Application of Tracer Technique,” Radiochimica Acta, Vol. 95, No. 3, 2007, pp. 173-176. doi:10.1524/ract.2007.95.3.173
[4] R. Lokhande, P. Singare and A. Kolte, “Study on Kinetics and Mechanism of Ion-Isotopic Exchange Reaction Using Strongly Basic Anion Exchange Resins DuoliteA- 101 D and Duolite A-102 D,” Radiochimica Acta, Vol. 95, No. 10, 2007, pp. 595-600. doi:10.1524/ract.2007.95.10.595
[5] R. Lokhande, P. Singare and M. Dole, “Comparative Study on Bromide and Iodide Ion-Isotopic Exchange Reactions Using Strongly Basic Anion Exchange Resin Duolite A-113,” Journal of Nuclear and Radiochemical Science, Vol. 7, No. 2, 2006, pp. 29-32.
[6] R. Lokhande, P. Singare and P. Karthikeyan, “The Kinetics and Mechanism of Bromide Ion Isotope Exchange Reaction in Strongly Basic Anion-Exchange Resin Duolite A-162 Determined by the Radioactive Tracer Technique,” Russian Journal of Physical Chemistry A, Vol. 81, No. 11, 2007, pp. 1768-1773. doi:10.1134/S0036024407110088
[7] R. Lokhande, P. Singare and M. Dole, “Application of Radiotracer Technique to Study the Ion Isotope Exchange Reactions Using a Strongly Basic Anion-Exchange Resin Duolite A-113,” Radiochemistry, Vol. 49, No. 5, 2007, pp. 519-522. doi:10.1134/S106636220705013X
[8] R. Lokhande, P. Singare and A. Patil, “Application of Radioactive Tracer Technique for Characterization of some Strongly Basic Anion Exchange Resins,” Radiochimica Acta, Vol. 96, No. 2, 2008, pp. 99-104. doi:10.1524/ract.2008.1465
[9] R. Lokhande, P. Singare and S. Tiwari, “Study of Bromide Ion-Isotopic Exchange Reaction Kinetics Using a Weakly Basic Macro Porous Resin Indion-860,” Radiochemistry, Vol. 50, No. 6, 2008, pp. 633-637. doi:10.1134/S106636220806009X
[10] R. Lokhande, P. Singare and S. Parab, “Application of Radioactive Tracer Technique to Study the Kinetics of Iodide Ion-Isotopic Exchange Reaction Using StronglyBasic Anion Exchange Resin Duolite A-116,” Radiochemistry, Vol. 50, No. 6, 2008, pp. 642-644. doi:10.1134/S1066362208060118
[11] R. Lokhande, P. Singare and V. Patil, “Application of Radioactive Tracer Technique to Study the Kinetics and Mechanism of Reversible Ion-Isotopic Exchange Reactionusing Strongly Basic Anion Exchange Resin Indion -850,” Radiochemistry, Vol. 50, No. 6, 2008, pp. 638- 641. doi:10.1134/S1066362208060106
[12] R. Lokhande, P. Singare and T. Prabhavalkar, “The Application of the Radioactive Tracer Technique to Study the Kinetics of Bromide Isotope Exchange Reaction with the Participation of Strongly Basic Anion Exchange Resin Indion FF-IP,” Russian Journal of Physical Chemistry A, Vol. 82, No. 9, 2008, pp. 1589-1595. doi:10.1134/S0036024408090331
[13] R. Lokhande, P. Singare and A. Kolte, “Application of Radioactive Tracer Technique for Characterization of Strongly Basic Anion Exchange Resins Duolite A 101D and Duolite A 102D,” Radiochemistry, Vol. 52,No. 1, 2010, pp. 81-86. doi:10.1134/S1066362210010182
[14] R. Lokhande, P. Singare and S. Tiwari, “Application of 82Br as a Radioactive Tracer Isotope to Study the Bromide Ion-Isotopic Exchange Reaction in Strongly BasicAnion Exchange Resin Duolite-A161,” Russian Journal of Physical Chemistry A, Vol. 83, No. 8, 2009, pp. 1389-1394. doi:10.1134/S003602440908024X
[15] S. K. Samanta, T. K. Theyyunni, B. M. MISRA, “Column Behavior of Aresorcinol-Formaldehyde Polycondensate Resin for Radio Cesium Removal Fromsimulated Radwaste Solution,” Journal of Nuclear Science and Technology, Vol. 32, No. 4, 1995, pp. 425-429. doi:10.3327/jnst.32.425
[16] International Atomic Energy Agency, “Advances in Technologies for the Treatment of Low and Intermediate Level Radioactive Liquid Wastes,” Technical Reports Series, No. 370, IAEA, Vienna, 1994.
[17] B. Saha and M. Streat, “Cation Exchange Resin- Catalysed Esterification of Acetic Acid with 2-(1-Cyclohexenyl) Cyclohexanone,” Catalysis Letters, Vol. 51, No. 1-2, 1998, pp. 121-127. doi:10.1023/A:1019084901133
[18] E. Dickinson and G. Stanisly, “Colloids and Foods,” Applied Science Publisher, London, New York, 1982, p. 220.
[19] International Atomic Energy Agency, “Operation and Control of Ion Exchange Processes for Treatment of Radioactive Wastes,” Technical Reports Series, No. 78, IAEA, Vienna, 1967.
[20] International Atomic Energy Agency, “Treatment of Low- and Intermediate-Level Liquid Radioactive Wastes,” Technical Reports Series, No. 236, IAEA, Vienna, 1984.
[21] C. Simister, F. Caron and R. Gedye, “Determination of the Thermal Degradation Rate of Polystyrene-Divinyl Benzene Ion Exchange Resins in Ultra-Pure Water at Ambient and Service Temperature,” Journal of Radioanalytical and Nuclear Chemistry, Vol. 261, No. 3, 2004, pp. 523-531. doi:10.1023/B:JRNC.0000037092.52163.3d
[22] Yu. Egiazarov, V. Radkevich, L. Kravchuk and A. Ivko, “Thermal Stability and Activity in Hydrogen Oxidation of Palladium Catalysts Supported on Fibrous Sulfonic Cation Exchanger in the Hydrogen and Magnesium Forms,” RussianJournal of Applied Chemistry, Vol. 77, No. 9, 2004, pp. 1500-1504. doi:10.1007/s11167-005-0059-8
[23] M. Hyder, S. Bartenev, L. Lazarev, V. Romanovskiy, S. Strelkov, G. Zachinyaev, E. Nazin, A. Aldochin, Y. Glagolenko, A. Maliych and S. Rovniy, “Russian Studies of the Safety of Anion Exchange in Nitric Acid,” Separation Science and Technology, Vol. 34, No. 6-7, 1999, pp. 1183-1194. doi:10.1080/01496399908951088
[24] M. Tomoi, K. Yamaguchi, R. Ando, Y. Kantake, Y. Aosaki and H. Kubota, “Synthesis and Thermal Stability of Novel Anion Exchange Resins with Spacerchains,” Journal of Applied Polymer Science, Vol. 64, No. 6, 1997, pp. 1161-1167. doi:10.1002/(SICI)1097-4628(19970509)64:6<1161::AID-APP16>3.0.CO;2-Z
[25] P. Tulupov and N. Polyanskii, “Thermal Stability of Anion-ExchangeResins,” Russian Chemical Review, Vol. 42, No. 9, 1973, pp. 754-771. doi:10.1070/RC1973v042n09ABEH002730
[26] A. Chapiro and P. Seidler, “Preparation et Proprietes de Quelques Membranes Semi-permeables Obtenues par Greffage de Films de Polytetrafluoroethylene dans leur Masse,” European Polymer Journal, Vol. 1, No. 3, 1965, pp. 189-205. doi:10.1016/0014-3057(65)90037-6
[27] D. Chambree, C. Iditoiu, E. Segal and A. Cesaro, “The Study of Non-isothermal Degradation of Acrylic Ion-Ex- Change Resins,” Journal of Thermal Analysis and Calorimetry,Vol. 82, No. 3, 2005, pp. 803-811. doi:10.1007/s10973-005-0967-0
[28] C. Iditoiu, E. Segal and D.Chambree, “Kinetics of Non-isothermal Behaviour of Synthetic Cationites with Low Acidity,” Journal of Thermal Analysis and Calorimetry, Vol. 56, No. 1, 1999, pp. 407-417. doi:10.1023/A:1010171222225
[29] C. Iditoiu, C. Popescu and D. Chambre, “Non-isothermal Dehydration Kinetics of Some Cationites,” Journal of Thermal Analysis and Calorimetry, Vol. 55, No. 3, 1999, pp. 885-893. doi:10.1023/A:1010142102614
[30] M. Matsuda, K. Funabashi, T. Nishi, H. Yusa and M. Kikuchi, “Decomposition of Ion Exchange Resins by Pyrolysis,” Nuclear Technology, Vol. 75, No. 1, 1986, pp. 187-193.
[31] M. Matsuda, K. Funabashi and H. Yusa, “Influence of Functional Sulfonic Acid Group on Pyrolysis Characteristics for Cation Exchange Resin,” Journal of Nuclear Science and Technology, Vol. 24, No. 2, 1987, pp. 124- 128. doi:10.3327/jnst.24.124
[32] S. Petterson and G. Kemmler, “Experience of Resin Pyrolysis,” Waste Management, Arizona Board of Regents, Vol. 2, 1984, pp. 223-225.
[33] L. Petrus, E. Stamhuis and G. Joosten, “Thermal Deactivation of Strong-Acid Ion-Exchange Resins in Water,” Industrial and Engineering Chemistry Product Research and Development, Vol. 20, No. 2, 1981, pp. 366-371. doi:10.1021/i300002a026
[34] B. Boinon, D. Ainad-Tabet and J. Montheard, “Thermal Degradation of Poly Ortho Chloro Methyl Styrene and Polymetachloromethylstyrene,” Polymer Degradation and Stability, Vol. 28, No. 2, 1990, pp. 197-207. doi:10.1016/0141-3910(90)90006-S

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.