A Soil Quality Index to Evaluate the Vermicompost Amendments Effects on Soil Properites

Abstract

The aims of this work were 1) to evaluate the changes in soil properties with the application of different amounts of vermicompost (10 and 20 Mg?ha–1), and 2) to construct a soil quality index that allows the evaluation of changes in the most sensitive soil parameters. The study was carried out in a cattle field of General Alvear, Buenos Aires, Argentina. Vermicompost application showed a positive effect on most of the chemical and biological soil properties evaluated, especially with the higher dose (20 Mg?ha–1). There were slight but significant increases in electrical conductivity and soil pH with the higher dose of vermicompost. Physical soil properties were not affected by the vermicompost amendment. The SQI showed a significant increase of soil quality with the vermicompost dose of 20 Mg?ha–1, especially by enhancing the biochemical and biological properties.

Share and Cite:

R. Romaniuk, L. Giuffré and R. Romero, "A Soil Quality Index to Evaluate the Vermicompost Amendments Effects on Soil Properites," Journal of Environmental Protection, Vol. 2 No. 5, 2011, pp. 502-510. doi: 10.4236/jep.2011.25058.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. Gaind and L. Nain, “Chemical and Biological Properties of Wheat Soil in Response to Paddy Straw Incorporation and Its Biodegradation by Fungal Inocu- lants,” Biodegradation, Vol. 18, 4, 2006, pp. 495-503. doi:10.1007/s10532-006-9082-6
[2] R. Albiach, R. Canet, F. Pomares and F. Ingelmo, “Microbial Biomass Content and Enzymatic Activities after the Application of Organic Amendments to a Horti- cultural Soil,” Bioresource Technology, Vol. 75, No. 1, 2000, pp. 43-48. doi:10.1016/S0960-8524(00)00030-4
[3] M. Gonzalez, E. Gomez, R. Comese, M. Quesada and M. Conti, “Influence of Organic Amendments on Soil Quality Potential Indicators in an Urban Horticultural System,” Bioresource Technology, Vol. 101, No. 22, 2010, pp. 8897-8901. doi:10.1016/j.biortech.2010.06.095
[4] J. J. Lee, R. D. Park, Y. W. Kim, J. H. Shim, D. H. Chae, Y. S. Rim, B. K. Sohn, T. H. Kim and K. Y. Kim, “Effect of Food Waste Compost on Microbial Population, Soil Enzyme Activity and Lettuce Growth,” Bioresource Technology, Vol. 93, No. 1, 2004, pp. 21-28. doi:10.1016/j.biortech.2003.10.009
[5] C. C. Edwards and I. Burrows, “The Potential of Earthworm Composts as Plant Growth Media,” In: C. A. Edwards, E. F. Neuhauser, Eds., Earthworms in Environ- mental and Waste Management, SPB Academic Publi- cation, The Netherlands, 1988, pp. 211-220.
[6] L. Carpenter-Boggs, A. C. Kennedy and J. P. Reganold, “Organic and Biodynamic Management: Effects on Soil Biology,” Soil Science Society of America Journal, Vol. 64, 2000, pp. 1651-1659. doi:10.2136/sssaj2000.6451651x
[7] H. P. Mahesewarappa, H. V. Nanjappa and M. R. Hegde, “Influence of Organic Manures on Yield of Arrowroot, Soil Physico-Chemical and Biological Properties When Grown as Intercrop in Coconut Garden,” Annals of Agricultural Research, Vol. 20, 1999, pp. 318-323.
[8] J. A. Pascual, T. Hernandez and C. Garcia, “Lasting Microbiological and Biochemical Effect of the Addition of Municipal Solid Waste to an Arid Soil,” Biology and Fertility of Soils, Vol. 30, 1999, pp. 1-6. doi:10.1007/s003740050579
[9] S. Marinari, G. Masciandaro, B. Ceccanti and S. Grego, “Influence of Organic and Mineral Fertilisers on Soil Biological and Physical Properties,” Bioresource Tech- nology, Vol. 72, No. 1, 2000, pp. 9-17. doi:10.1016/S0960-8524(99)00094-2
[10] N. Q. Arancon, C. A. Edwards and P. Bierman, “Influences of Vermicomposts on Field Strawberries: Part 2. Effects on Soil Microbiological and Chemical Pro- perties,” Bioresurce Technology, Vol. 97, No. 6, 2006, pp. 831-840. doi:10.1016/j.biortech.2005.04.016
[11] M. Tejada, A. M. García-Martínez and J. Parrado, “Effects of a Vermicompost Composted with Beet Vina- sse on Soil Properties, Soil Losses and Soil Restoration,” Catena, Vol. 77, No. 3, 2009, pp. 238-247. doi:10.1016/j.catena.2009.01.004
[12] S. S. Andrews, D. L. Karlen and J. P. Mitchell, “A Comparision of Soil Quality Indexing Methods for Vege- table Production Systems in Northern California,” Agri- culture, Ecosystems & Environment, Vol. 90, No. 1, 2002, pp. 25-45. doi:10.1016/S0167-8809(01)00174-8
[13] F. Bastidia, A. Zsolnay, T. Hernandez and C. García, “Past, Present and Future of Soil Quality Indices: A Biological Perspective,” Geoderma, Vol. 147, No. 40271, 2008, pp. 159-171. doi:10.1016/j.geoderma.2008.08.007
[14] C. A. Cambardella, T. B. Moorman, S. S. Andrews and D. L. Karlen, “Watershed–Scale Assessment of Soil Quality in the Loess Hills of SOUTHWEST IOwa,” Soil & Tillage Research, Vol. 78, No. 2, 2004, pp. 237-247. doi:10.1016/j.still.2004.02.015
[15] J. J. C. Dawson, E. J. Godsiffe, L. P. Thompson, T. K. Ralebitso-Senior, K. S. Killham and G. I. Paton, “Application of Biological Indicators to Assess Recovery of Hydrocarbon Impacted Soils,” Soil Biology & Biochemistry, Vol. 39, No. 1, 2007, pp. 164-177. doi:10.1016/j.soilbio.2006.06.020
[16] D. G. Karlen, M. D.Tomer, J. Neppel and C. A. Cam- bardella, “A preliminary Watershed Scale Soil Quality Assessment in North Central Iowa, USA,” Soil and Tillage Research, Vol. 99, 2009, pp. 291-299. doi:10.1016/j.still.2008.03.002
[17] Y. Qi, J. L. Darilek, B. Huang, Y. Zhao, W. Sun and Z. Gu, “Evaluating Soil Quality Indexes in Agricultural Region of Jiangsu Province, China,” Geoderma, Vol. 149, No. 3-4, 2009, pp. 325-334. doi:10.1016/j.geoderma.2008.12.015
[18] K. L. Sharma, G. Kussuma, M. Uttam Kumar, N. G. Pavin, K. Sinvras, G. R. Korwar, V. Hima Bindu, V. Ramesh, R. Kausalya and S. K. Yadav, “Evaluation of Long-Term Soil Management Practices Using Key Indicators and Soil Quality Indexes in a Semi-Arid Tro- pical Alfisol,” Australian Journal of Soil Research, Vol. 46, 2008, pp. 368-377. doi:10.1071/SR07184
[19] G. R. Blake, “Bulk density,” In: C. A. Black, Ed., Methods of Soil Analysis, Part I, Physical and Minera- logical Properties, including Statistics of Measurement and Sampling, American Society of Agronomy, Madison, WI, USA, 1965, pp. 374-395.
[20] G. J. Bouyoucos, “The Hydrometer as a New Method for the Mechanical Analysis of Soils,” Soil Science, Vol. 23, 1972, pp. 343-352. doi:10.1097/00010694-192705000-00002
[21] L. De Leenheer and M. De Boodt, “Determination of Aggregate Stability by the Change in Mean Weight Diameter,” International Symposium on Soil Structure, Gent. Proceeding, Vol. 24, 1958, pp. 290-300.
[22] R. H. Bray and L. T. Kurtz, “Determination of Total, Organic and Available Forms of Phosphorus in Soils,” Soil Science, Vol. 59, No. 1, 1945, pp. 39-45. doi:10.1097/00010694-194501000-00006
[23] D. W. Nelson and L. E. Sommers, “Total Carbon, Organic Carbon and Organic Matter,” In: D. L. Sparks, Ed., Methods of Soil Analysis, Part 3, Chemical Methods, Soil Science Society of America, Madison, WI, USA, 1996, pp. 961-1010.
[24] C. A. Cambardella and E. T. Elliott, “Particulate Soil Organic-Matter across a Grassland Cultivation Sequen- ce,” Soil Science Society of America Journal, Vol. 56, 1992, pp. 777-783. doi:10.2136/sssaj1992.03615995005600030017x
[25] R. J. Haynes, “Labile Organic Matter Fractions as a Central Component of the Quality of Agricultural Soils: An Overview,” Advances in Agronomy, Vol. 85, 2005, pp. 221-268. doi:10.1016/S0065-2113(04)85005-3
[26] D. S. Jenkinson and D. S. Powlson, “The Effects of Biocidal Treatments on Metabolism in Soil. V. A Method for Measuring Soil Biomass,” Soil Biology and Bio- chemistry, Vol. 8, 1976, pp. 209-213. doi:10.1016/0038-0717(76)90005-5
[27] E. D. Vance, P. C. Brookes and D. S. Jenkinson, “An Extraction Method for Measuring Soil Microbial Biomass C,” Soil Biology & Biochemistry, Vol. 19, No. 6, 1987, pp. 703-707.
[28] F. Caravaca, G. Masciandaro and B. Ceccanti, “Land Use in Relation to Soil Chemical and Biochemical Properties in a Semiarid. Mediterranean Environment,” Soil and Tillage Research, Vol. 68, 2002, pp. 23-30. doi:10.1016/S0167-1987(02)00080-6
[29] J.K. Whalen, Q. Hu and A. Liu, “Compost Applications Increase Water-Stable Aggregates in Conventional and No-Tillage Systems,” Soil Science Society of America Journal, Vol. 67, 2003, pp. 1842-1847. doi:10.2136/sssaj2003.1842
[30] P. K. Padmavathiamma, L. Y. Li and U. R. Kumari, “An Experimental Study of Vermi-Biowaste Composting for Agricultural Soil Improvement,” Bioresurce technology, Vol. 99, No. 6, 2008, pp. 1672-1681.
[31] W. Devliegher and W. Verstraete, “The Effect of Lumbricus Terrestris on Soil in Relation to Plant Growth: Effects of Nutrient Enrichment Processes and Gut Associated Processes,” Soil Biology & Biochemistry, Vol. 29, 1997, pp. 341-346. doi:10.1016/S0038-0717(96)00096-X
[32] J. Leifeld, S. Siebert and R. I. K?gel-Knabner, “Stabilization of Composted Organic Matter after Application to a Humus-Free Sandy Mining Soil,” Journal of Environmental Quality, Vol. 30, 2001, pp. 602-607. doi:10.2134/jeq2001.302602x
[33] D. A. Laird, D. A., Martens and W. L. Kingery, “Nature of Clay-Humic Complexes in an Agricultural Soil. I. Chemical, Biochemical, and Spectroscopic Analyses,” Soil Science Society of America Journal, Vol. 65, No. 5, 2001, pp. 1413-1418. doi:10.2136/sssaj2001.6551413x
[34] A. Fortuna, R. R. Harwood and E. A. Paul, “The Effects of Compost and Crop Rotation on Carbon Turnover and the Particulate Organic Matter Fraction,” Soil Science, Vol. 168, No. 6, 2003, pp. 434-444.
[35] D. G. Fraser, J. W. Doran, W. W. Sahs and G. W. Leosing, “Soil Microbial Population and Activity Under Conventional and Organic Management,” Journal of Environmental Quality, Vol. 17, No. 4, 1988, pp. 585- 590.
[36] M. J. Kirckner, A. G. Wollum and L. D. King, “Soil Microbial Populations and Activities in Reduced Che- mical Input Agroecosystem,” Soil Science Society of America Journal, Vol. 57, 5, 1993, pp. 1289-1295. doi:10.2136/sssaj1993.03615995005700050021x
[37] L. Leita, M. De Nobili, C. Mondini, G. Muhlbachova, L. Marchiol, G. Bragato and M. Cotin, “Influence of Inorganic and Organic Fertilization on Soil Microbial Biomass, Metabolic Quotient and Heavy Metal Bio- availability,” Biology and Fertility of Soils, Vol. 28, 1999, pp. 371-376. doi:10.1007/s003740050506
[38] T. Marika, J. Truua and M. Ivask, “Soil micRobiological and Biochemical Properties for Assessing the Effect of Agricultural Management Practices in Estonian Culti- vated Soils,” European Journal of Soil Biology, Vol. 44, No. 2, 2008, pp. 231-237. doi:10.1016/j.ejsobi.2007.12.003
[39] C. Macci, S. Doni, E. Peruzzi, G. Masciandaro, C. Mennone and B. Ceccanti, “Almond Tree and Organic Fertilization for Soil Quality Improvement in Southern Italy,” Journal of Environmental Management, 2010, pp. 1-8, Article in Press.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.