Share This Article:

Equivalent Circuit Modification for Organic Solar Cells

Abstract Full-Text HTML XML Download Download as PDF (Size:561KB) PP. 153-160
DOI: 10.4236/cs.2015.66016    5,642 Downloads   6,309 Views   Citations

ABSTRACT

In this work, a newly fabricated organic solar cell based on a composite of fullerene derivative [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) and regioregular poly (3-hexylthiophene) (P3HT) with an added interfacial layer of AgOx in between the PEDOT:PSS layer and the ITO layer is investigated and an equivalent circuit model is proposed for the device. Incorporation of the AgOx interfacial layer shows an increase in fill factor (by 33%) and power conversion efficiency (by 28%). Moreover, proper correlation has been achieved between the experimental and simulated I-V plots. The simulation shows that device characteristics can be explained with accuracy by the proposed model.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Hossain, N. , Das, S. and Alford, T. (2015) Equivalent Circuit Modification for Organic Solar Cells. Circuits and Systems, 6, 153-160. doi: 10.4236/cs.2015.66016.

References

[1] Brabec, C.J., Sariciftci, N.S. and Hummelen, J.C. (2001) Plastic Solar Cells. Advanced Functional Materials, 11, 15-26. http://dx.doi.org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A
[2] Krebs, F.C. (2009) Fabrication and Processing of Polymer Solar Cells: A Review of Printing and Coating Techniques. Solar Energy Materials and Solar Cells, 93, 394-412.
http://dx.doi.org/10.1016/j.solmat.2008.10.004
[3] Chen, H.Y., Hou, J., Zhang, S., Liang, Y., Yang, G., Yang, Y., Yu, L., Wu, Y. and Li, G. (2009) Polymer Solar Cells with Enhanced Open-Circuit Voltage and Efficiency. Nature Photonics, 3, 649-653.
http://dx.doi.org/10.1038/nphoton.2009.192
[4] Kim, J.Y., Lee, K., Coates, N.E., Moses, D., Nguyen, T.-Q., Dante, M. and Heeger, A.J. (2007) Lithography and Fabrication of Frictional Tiers on Poly(dimethylsiloxane) Using Atomic Force Microscopy. Science, 317, 222-225. http://dx.doi.org/10.1126/science.1141711
[5] Krebs, F.C. (2005) Alternative PV: Large Scale Organic Photovoltaics. Alternative PV: Large Scale Organic Photovoltaics, Refocus, 6, 38-39. http://dx.doi.org/10.1016/S1471-0846(05)70399-1
[6] Ma, H., Yip, H.L., Huang, F. and Jen, A.K.-Y. (2010) Interface Engineering for Organic Electronics. Advanced Functional Materials, 20, 1371-1388. http://dx.doi.org/10.1002/adfm.200902236
[7] He, Z., Zhong, C., Su, S., Xu, M., Wu, H. and Cao, Y. (2012) Enhanced Power-Conversion Efficiency in Polymer Solar Cells Using an Inverted Device Structure. Nature Photonics, 6, 591-595.
http://dx.doi.org/10.1038/nphoton.2012.190
[8] Li, G., Zhu, R. and Yang, Y. (2012) Polymer Solar Cells. Nature Photonics, 6, 153-161.
http://dx.doi.org/10.1038/nphoton.2012.11
[9] Spanggaard, H. and Krebs, F.C. (2004) A Brief History of the Development of Organic and Polymeric Photovoltaics. Solar Energy Materials and Solar Cells, 83, 125-146.
http://dx.doi.org/10.1016/j.solmat.2004.02.021
[10] Na, S.-I., Kim, S.-S., Jo, J. and Kim, D.-Y. (2008) Efficient and Flexible ITP-Free Organic Solar Cells Using Highly Conductive Polymer Anodes. Advanced Materials, 20, 4061-4067.
http://dx.doi.org/10.1002/adma.200800338
[11] Cho, Y.J., Lee, J.Y., Chin, B.D. and Forrest, S.R. (2013) Polymer Bulk Heterojunction Photovoltaics Employing a Squaraine Donor Additive. Organic Electronics, 14, 1081-1085.
http://dx.doi.org/10.1016/j.orgel.2013.01.014
[12] Brabec, C.J., Shaheen, S.E., Winder, C., Sariciftci, N.S. and Denk, P. (2002) Effect of LiF/Metal Electrodes on the Performance of Plastic Solar Cells. Applied Physics Letters, 80, 1288-1290.
http://dx.doi.org/10.1063/1.1446988
[13] Ramsdale, C.M., Barker, J.A., Arias, A.C., MacKenzie, J.D., Friend, R.H. and Greenham, N.C. (2002) The Origin of the Open-Circuit Voltage in Polyfluorene-Based Photovoltaic Devices. Journal of Applied Physics, 92, 4266-4270. http://dx.doi.org/10.1063/1.1506385
[14] Khodabakhsh, S., Sanderson, B.M., Nelson, J. and Jones, T.S. (2006) Using Self-Assembling Dipole Molecules to Improve Charge Collection in Molecular Solar Cells. Advanced Functional Materials, 16, 95-100. http://dx.doi.org/10.1002/adfm.200500207
[15] Kim, J.S., Park, J.H., Lee, J.H., Jo, J., Kim, D.Y. and Cho, K. (2007) Control of the Electrode Work Function and Active Layer Morphology via Surface Modification of Indium Tin Oxide for High Efficiency Organic Photovoltaics. Applied Physics Letters, 91, Article No. 112111.
http://dx.doi.org/10.1063/1.2778548
[16] Chang, M.-Y., Wu, C.-S., Chen, Y.-F., Hsieh, B.-Z., Huang, W.-Y., Ho, K.-S., Hsieh, T.-H. and Han, Y.-K. (2008) Polymer Solar Cells Incorporating One-Dimensional Polyaniline Nanotubes. Organic Electronics, 9, 1136-1139. http://dx.doi.org/10.1016/j.orgel.2008.08.001
[17] Subbiah, J., Kim, D.Y., Hartel, M. and So, F. (2010) MoO3/TFB Double Interlayer Effect on Polymer Solar Cells. Applied Physics Letters, 96, Article No. 063303. http://dx.doi.org/10.1063/1.3310013
[18] Kenji, K., Pacios, R. and Poplavskyy, D. (2006) Solar Energy Materials and Solar Cells. Solar Energy Materials and Solar Cells, 90, 3520-3530.
[19] Janssen, R.A.J., Hummelen, J.C. and Saritiftci, N.S. (2005) Polumer-Fullerene Bulk Heterojunction Solar Cells. MRS Bulletin, 30, 33-36. http://dx.doi.org/10.1557/mrs2005.6
[20] Brabec, C.J., Hauch, J.A., Schilinsky, P. and Wladauf, C. (2005) Production Aspects of Organic Photovoltaics and Their Impact on the Commercialization of Devices. MRS Bulletin, 30, 50-52.
http://dx.doi.org/10.1557/mrs2005.10
[21] Coakley, K.M. and McGehee, M.D. (2004) Conjugated Polymer Photovoltaic Cells. Chemistry of Materials, 16, 4533-4532. http://dx.doi.org/10.1021/cm049654n
[22] Jørgensen, M., Norrman, K. and Krebs, F.C. (2008) Stability/Degradation of Polymer Solar Cells. Solar Energy Materials and Solar Cells, 92, 686-714. http://dx.doi.org/10.1016/j.solmat.2008.01.005
[23] Shaneen, S.E., Brabec, C.J., Sariciftci, N.S., Padinger, F., Fromherz, T. and Hummelen, J.C. (2001) 2.5% Efficient Organic Plastic Solar Cells. Applied Physics Letters, 78, 841.
http://dx.doi.org/10.1063/1.1345834
[24] Dang, M.T., Hirsch, L. and Wantz, G. (2011) P3HT:PCBM, Best Seller in Polymer Photovoltaic Research. Advanced Materials, 23, 3597-3602. http://dx.doi.org/10.1002/adma.201100792
[25] Choy, W.C.H. (2013) Organic Solar Cells: Materials and Device Physics, Springer, London, 5.
http://dx.doi.org/10.1007/978-1-4471-4823-4
[26] Arias, A.C., Granstrom, M., Thomas, D.S., Petritsch, K. and Friend, R.H. (1999) Doped Conducting-Polymer-Semi-conducting-Polymer Interfaces: Their Use in Organic Photovoltaic Devices. Physical Review B, 60, 1854-1860. http://dx.doi.org/10.1103/PhysRevB.60.1854
[27] Pingree, L.S.C., MacLeod, B.A. and Ginger, D.S. (2008) The Changing Face of PEDOT:PSS Films: Substrate, Bias, and Processing Effects on Vertical Charge Transport. The Journal of Physical Chemistry C, 112, 7922-7927. http://dx.doi.org/10.1021/jp711838h
[28] Yan, H., Lee, P., Armstrong, N.R., Graham, A., Evmenenko, G.A., Dutta, P. and Marks, T.J. (2005) High-Performance Hole-Transport Layer for Polymer Light-Emitting Diodes. Implementation of Organosiloxane Cross-linking Chemistry in Polymeric Electroluminescent Devices. The Journal of the American Chemical Society, 127, 3172-3183. http://dx.doi.org/10.1021/ja044455q
[29] Shrotriya, V., Li, G., Chu, C.-W. and Yang, Y. (2006) Transition Metal Oxides as the Buffer Layer for Polymer/Photovoltaic Cells. Applied Physics Letters, 88, Article ID: 073508.
http://dx.doi.org/10.1063/1.2174093
[30] Das, S. and Alford, T.L. (2014) Improved Efficiency of P3HT:PCBM Solar Cells by Incorporation of Silver Oxide Interfacial Layer. Journal of Applied Physics, 116, Article No. 044905.
http://dx.doi.org/10.1063/1.4891246
[31] Irwin, M.D., Buchholz, B., Hains, A.W., Chang, R.P.H. and Marks, T.J. (2008) p-Type Semiconducting Nickel Oxide as an Efficiency Enhancing Anode Interfacial Layer in Polymer Bulk Hererojunction Solar Cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 2783-2787. http://dx.doi.org/10.1073/pnas.0711990105
[32] Vasilopoulou, M., Soultati, A., Georgeiadou, D.G., Stergiopoulos, T., Palilis, L.C., Kennou, S., Stathopoulos, N.A., Davazoglou, D. and Argitis, P. (2014) Hydrogenated Under-Stoichiometric Tungsten Oxide Anode Interlayers for Efficient and Stable Organic Photovoltaics. Journal of Materials Chemistry A, 2, 1738-1749. http://dx.doi.org/10.1039/C3TA13975A

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.