Dynamic Interaction Confinement
Gabriel Barceló
Advanced Dynamics S.A., Madrid, Spain.
DOI: 10.4236/wjnst.2014.44031   PDF   HTML   XML   4,229 Downloads   5,320 Views   Citations

Abstract

The importance of developing new technologies to obtain energy by means of nuclear fusion procedures is beyond question. There are several different and technically possible models for doing this, though to date none of these has been able to attain an industrial reactor with an end performance greater than unity. We still find ourselves at the initial phase, after many years, as a result of having failed as yet to come up with a commercially productive machine. Nuclear fusion research has defined a prototype reactor based on a fluid conductor, isolated materially in a physical container and confined by means of magnetic fields. In this fluid-plasma which interacts with magnetic fields, fusion reactions are caused that release energy, while at the same time a quantity of movement and angular momentum is moved or “rotated” and transported. However, turbulence is caused in these magnetic confinement fusion processes that reduces system efficiency and prevents the obtaining of sufficient net energy from the nuclear reactions. This paper aims to propose new dynamic hypotheses to enhance our understanding of the behaviour of the plasma in the reactor. In doing so, we put forward a profound revision of classical dynamics. After over thirty years studying rotational dynamics, we propose a new theory of dynamic interactions to better interpret nature in rotation. This new theory has been tested experimentally returning positive results, even by third parties. We suggest that these new dynamic hypotheses, which we hold applicable to particle systems accelerated by rotation, be used in the interpretation and design of fusion reactors. We believe that this proposal could, in addition to magnetic confinement, achieve confinement by simultaneous and compatible dynamic interaction. Accordingly, we are of the opinion that it would be possible to get better performance and results in the design of fusion reactors by way of simultaneous magnetic and dynamic interaction confinement.

Share and Cite:

Barceló, G. (2014) Dynamic Interaction Confinement. World Journal of Nuclear Science and Technology, 4, 249-260. doi: 10.4236/wjnst.2014.44031.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Hurricane, O.A., et al. (2014) Fuel Gain Exceeding Unity in an Inertially Confined Fusion Implosion. Nature, 506, 343-348.
http://dx.doi.org/10.1038/nature13008
[2] Bittencourt, J.A. (2004) Fundamentals of Plasma Physics. Springer, Berlin.
http://dx.doi.org/10.1007/978-1-4757-4030-1
[3] Chen, F.F. (1984) Introduction to Plasma Physics and Controlled Fusion: Plasma Physics. Springer, Berlin.
http://dx.doi.org/10.1007/978-1-4757-5595-4
[4] Clayton, D.D. (1983) Principles of Stellar Evolution and Nucleosynthesis. McGraw-Hill, New York; Reissued by University of Chicago Press, Chicago.
[5] Brizard, A.J. and Hahm, T.S. (2007) Foundations of Nonlinear Gyrokinetic Theory. Reviews of Modern Physics, 79, 421.
[6] Larrea Bellod, E. (2010) Los significados del campo electromagnético y sus transformaciones históricas. Bubok. C/ Belén 13, Madrid. Also: Larrea Bellod, E. (2008) Teorías sobre el origen de la luz y el campo electromagnetic. Bubok. C/Belén 13, Madrid.
[7] Alonso de Pablo, J.A. and Almeida, J.S. (2013) La rotación y el transporte de momento en plasmas astrofísicos y de laboratorio.
[8] Abel, I.G., Plunk, G.G., Wang, E., Barnes, M., Cowley, S.C., Dorland, W. and Schekochihin, A.A. (2013) Multiscale Gyrokinetics for Rotating Tokamak Plasmas: Fluctuations, Transport and Energy Flows.
iv: 1209.4782v4 [physics.plasm-ph]
[9] Brizard, A.J. (2010) Lectures on Gyrokinetic Theory. Part I: Physical and Mathematical Foundations of Gyrokinetic Theory. Summer School on Self-Organization in Turbulent Plasmas and Fluids. Max-Planck-Institut für Physik Komplexer Systeme. Dresden.
[10] Howes, G.G., et al. (2006) Astrophysical Gyrokinetics: Basic Equations and Linear Theory. The Astrophysical Journal, 651, 590-614.
http://stacks.iop.org/0004-637X/651/i=1/a=590
[11] Alfvén, H. (1950) Cosmical Eletrodynamics (The International Series of Monographs on Physics). Clarendon Press.
http://ia600703.us.archive.org/23/items/CosmicalElectrodynamics/Alfven-CosmicalElectrodynamics.pdf
[12] Parra, F.I. and Calvo, I. (2011) Phase-Space Lagrangian Derivation of Electrostatic Gyrokinetics in General Geometry. Plasma Physics and Controlled Fusion, 53, Article ID: 045001.
http://stacks.iop.org/0741-3335/53/i=4/a=045001
[13] Text of the Declaration of the Jury of the American Physical Society (APS) on Awarding Félix Parra Díaz, Aeronauti cal Engineer from the Universidad Politécnica de Madrid, with the 2011 Marshall N. Rosenbluth Award for His Thesis: Extension of Gyrokinetics to Transport Time Scales, Massachusetts Institute of Technology (MIT).
[14] Ikeda, K. (2007) Progress in the ITER Physics Basis. Nuclear Fusion, 47, S203.
http://stacks.iop.org/0029-5515/47/i=6/a=E01
[15] Rice, J.E., Ince-Cushman, A.C., Reinke, M.L., Podpaly, Y., Greenwald, M.J., LaBombard, B. and Marmar, E.S. (2008) Spontaneous Core Toroidal Rotation in Alcator C-Mod L-Mode, H-Mode and ITB Plasmas. Nuclear Fusion, 50, Artcle ID: 124042.
http://dx.doi.org/10.1088/0741-3335/50/12/124042
[16] Parra, F.I., Barnes, M., Calvo, I. and Catto, P.J. (2012) Intrinsic Rotation with Gyrokinetic Models. Physics of Plasmas, 19, Article ID: 056116.
http://link.aip.org/link/?PHP/19/056116/1
[17] Parra, F.I., Barnes, M., Peierls, R. and Catto, P.J. Sources of Intrinsic Rotation in the Low Flow Ordering. Centre for Theoretical Physics, University of Oxford, Oxford, Plasma Science and Fusion Center, Massachusetts Institute of Technology.
[18] Peeters, A.G., Angioni, C. and Strinzi, D. (2007) Toroidal Momentum Pinch Velocity due to the Coriolis Drift Effect on Small Scale Instabilities in a Toroidal Plasma. Physical Review Letters, 98, Article ID: 265003.
http://dx.doi.org/10.1103/PhysRevLett.98.265003
[19] Waltz, R.E., Staebler, G.M., Candy, J. and Hinton, F.L. (2007) Gyrokinetic Theory and Simulation of Momentum Transport and Energy Exchange. Physics of Plasmas, 14.
[20] Roach, C.M., Abel, I.G., Akers, R.J., Arter, W., Barnes, M., et al. (2009) Gyrokinetic Simulations of Spherical Tokamaks. Plasma Physics and Controlled Fusion, 51, Article ID: 124020.
http://dx.doi.org/10.1088/0741-3335/51/12/124020
[21] Camenen, Y., Peeters, A.G., Angioni, C., Casson, F.J., Hornsby, W.A., Snodin, A.P. and Strintzi, D. (2009) Transport of Parallel Momentum Induced by Current-Symmetry Breaking in Toroidal Plasmas. Physical Review Letters, 102, Article ID: 125001.
http://dx.doi.org/10.1103/PhysRevLett.102.125001
[22] Casson, F.J., Peeters, A.G., Camenen, Y., Angioni, C., Hornsby, W.A., Snodin, A.P., Strintzi, D. and Szepesi, G. (2009) Anomalous Parallel Momentum Transport Due to E × B Flow Shear in a Tokamak Plasma. Physics of Plasmas, 16, Article ID: 092303.
http://dx.doi.org/10.1063/1.3227650
[23] Highcock, E.G., Barnes, M., Schekochihin, A.A., Parra, F.I., Roach, C.M. and Cowley, S.C. (2010) Transport Bifurcation in a Rotating Tokamak Plasma. Physical Review Letters, 105, Article ID: 215003.
http://dx.doi.org/10.1103/PhysRevLett.105.215003
[24] Wang, L. and Diamond, P.H. (2013) Gyrokinetic Theory of Turbulent Acceleration of Parallel Rotation in Tokamak Plasmas. Physical Review Letters, 110, Article ID: 265006.
[25] Lee, J.P., Parra, F.I. and Barnes, M. (2013) Turbulent Momentum Pinch of Diamagnetic Flows in a Tokamak. Nuclear Fusion, 54, Article ID: 022002.
[26] Parra, F.I. and Barnes, M. (2014) Intrinsic Rotation in Tokamaks. Theory. arXiv: 1407.1286v1
[27] Parra, F.I., Calvo, I., Burby, J.W., Squire, J. and Qin, H. (2014) Equivalence of Two Independent Calculations of the Higher Order Guiding Center Lagrangian. Physics of Plasmas, 21, Article ID: 104506.
[28] Barceló, G. (2014) Theory of Dynamic Interactions: The Flight of the Boomerang. Journal of Applied Mathematics and Physics, 2, 569-580.
http://dx.doi.org/10.4236/jamp.2014.27063
[29] Barceló, G. (2005) The Flight of the Boomerang. El Vuelo del Bumerán, Marcombo, Barcelona.
http://www.dinamicafundacion.com/
[30] Theory of Dynamic Interactions.
http://www.youtube.com/watch?v=P9hGgoL5ZGk&list=PL3E50CF6AEBEED47B
http://www.youtube.com/watch?v=XzTrGEtJGXU&list=PL3E50CF6AEBEED47B
http://www.youtube.com/watch?v=dtMqGSU9gV4&list=PL3E50CF6AEBEED47B
http://www.youtube.com/watch?v=qK5mW2j2nzU&list=PL3E50CF6AEBEED47B
[31] Rico-Avello, G.B. Analysis of Dynamic Field Systems Accelerated by Rotation. Dynamics of Non-Inertial Systems. DeMSET-2011 Congress, Miami.
http://www.coiim.es/forocientifico/FORO%20CIENTFICO/Documentos/DeMSET_2011_GBarcelo.pdf
[32] Pérez, L. (2013) New Evidence on Rotational Dynamics. World Journal of Mechanics, 3, 174-177.
http://www.scirp.org/journal/wjm
http://dx.doi.org/10.4236/wjm.2013.33016
[33] Pérez, L.A. (2013) Reflecting New Evidence on Rotational Dynamics.
http://vimeo.com/68763196
[34] Bauluz, E. New Dynamic Hypotheses. This Video Showed the Experimental Tests Carried out by Advanced Dynamics S. A. to Proof and Justify the Theory of Dynamic Interactions.
http://www.advanceddynamics.net/
[35] Barceló, G. (2013) Technological Applications of the New Theory of Dynamic Interactions. Global Journal of Researches in Engineering: Mechanical and Mechanics Engineering-G, 13, Version 1.0.
https://globaljournals.org/GJRE_Volume13/E-Journal_GJRE_(G)_Vol_13_Issue_5.pdf
[36] González, M.D. (2013) Dinámica de sistemas con spin: Un nuevo enfoque. Fundamentos y aplicaciones. ADI Ser, Madrid.
[37] González, M.D. Equation of Motion of Systems with Internal Angular Momentum-II. arXiv:physics/0603207.
[38] Barceló, G. (2013) Theory of Dynamic Interactions: Laws of Motion. World Journal of Mechanics, 3, 328-338.
http://dx.doi.org/10.4236/wjm.2013.39036
[39] Barceló, G. (2008) A Rotating World (Un mundo en rotación). Editorial Marcombo: Barcelona.
http://www.dinamicafundacion.com/
[40] Krommes, J.A. (2011) The History and Present Status of Gyrokinetic Theory. International Sherwood Fusion Theory Conference, Austin, 4 May 2011.
[41] Barceló, G. (2010) On the Equivalence Principle. 61st International Astronautical Congress, American Institute of Aeronautics and Astronautics, Prague.
http://www.coiim.es/forocientifico/FORO%20CIENTFICO/Documentos/ON_THE_EQUIVALENCE_PRINCIPLE.pdf
[42] Barceló, G. (2013) Proposal of New Criteria for Celestial Mechanics. International Journal of Astronomy and Astrophysics, 3, 385-391.
http://dx.doi/org/10.4236/ijaa.2013.34044
[43] Barceló, G. (2013) Imago Universi: A Story of the Human Conception of the Cosmos. Arpegio, Barcelona.
http://www.editorialarpegio.com/
http://imagouniversi.com/

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.