Pesticide Influence on the Desmid Flora of a Reservoir in an Agricultural Region at Campo Verde, Mato Grosso, Brazil


The objective of the research was to investigate the influence of pesticides on the desmid flora. Five series of samples were taken between July 5, 2005, and April 6, 2006, for analysis of pesticide content and algal community structure in the Sao Lourenco River springs on the Pirassununga Ranch, Campo Verde, Mato Grosso. The greatest amounts of pesticides were detected in July, when the abundance of algae was also greatest. Positive correlations were determined between the concentrations of endosulfan (r = 0.94; p = 0.051), cyhalothrin (r = 0.96; p = 0.037) and endrin (r = 0.96; p = 0.037) and the biomass of desmids. Insecticides, such as endosulfan, inhibit the activity of ATPase, contributing considerably to the mortality of the biota, since ATP is of fundamental importance in the energy metabolism of all organisms. This suggests that the pesticides promote algal growth both by removing the small herbivores that feed on the algae and increasing the release of inorganic nutrients from decomposing animals in the water. Algae were least abundance in January, possibly due to the presence of the herbicide atrazine (r = -0.63; p > 0.05).

Share and Cite:

Braga, J. , Hardoim, E. , Dores, E. and Heckman, C. (2014) Pesticide Influence on the Desmid Flora of a Reservoir in an Agricultural Region at Campo Verde, Mato Grosso, Brazil. Journal of Environmental Protection, 5, 1116-1125. doi: 10.4236/jep.2014.512110.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Wiszniowski, J., Ter-Halle, A., Richard, C., Hitmi, A. and Ledoigt, G. (2009) Photodegradation Product of Sulcotrione and the Physiological Response of Maize (Zea mays) and White Mustard (Sinapis alba). Chemosphere, 74, 1224-1230.
[2] Eichelberger, J.W. and Lichtenberg, J.J. (1971) Persistence of Pesticides in River Water. Environmental Science Technology, 5, 541-544.
[3] Ma, J., Wang, S., Wang, P., Ma, L. Chen, X. and Xu., R. (2006) Toxicity Assessment of 40 Herbicides to the Green Alga Raphidocelis subcapitata. Ecotoxicology and Environmental Safety, 63, 456-462.
[4] Palma, P., Palma, V.L., Matos, C., Fernandes, R.M., Bohn, A., Soares, A.M.V.M. and Barbosa, I.R. (2009) Effects of Atrazine and Endosulfan Sulphate on the Ecdysteroid System of Daphnia magna. Chemosphere, 74, 676-681.
[5] Scarlett, A. Donkin, P., Fileman, T.W., Evans, S.W. and Donkin, M.E. (1999) Risk Posed by the Antifouling Agent Irgarol 1051 to the Seagrass. Zostera marina. Aquatic Toxicology, 45, 159-170.
[6] Nystrom, B., Becker-Van Slooten, K., Berard, A., Grandjean, D., Druart, J.C. and Leboulanger, C. (2002) Toxic Effects of Irgarol 1051 on Phytoplankton and Macrophytes in Lake Geneva. Water Research, 36, 2020-2028.
[7] Owen, R., Knap, A., Toaspern, M. and Karbery, K. (2002) Inhibition of Coral Photosynthesis by the Antifouling Herbicide Irgarol 1051. Marine Pollution Bulletin, 44, 623-632.
[8] Hall Jr., L.W., Giddings, J.M., Solomon, K.R. and Balcomb, R. (1999) An Ecological Risk Assessment for the Use of Irgarol 1051 as an Algaecide for Antifoulant Paints. Critical Reviews in Toxicology, 29, 367-437.
[9] Berard, A., Dorigo, U., Mercier, I., Becker-Van Slooten, K., Grandjean, D. and Leboulanger. C. (2003) Comparison of the Ecotoxicological Impact of the Triazines Irgarol 1051 and Atrazine on Microalgal Cultures and Natural Microalgal Communities in Lake Geneva. Chemosphere, 53, 935-944.
[10] Parra, O.O. and Bicudo, C.E.M. (1995) Introducion a la Biologia y SistemAtica de las Algas de Aguas Continentales. GrAfica Andes, Santiago, 269 p.
[11] Ricklefs, R.E. (2003) A economia da natureza. 5th Edition, Guanabara Koogan, Rio de Janeiro, 381-384. (In Portuguese)
[12] Laabs, V., Amelung, W., Pinto, A., Altstaedt, A. and Zech, W. (2000) Leaching and Degradation of Corn and Soybean Pesticides in an Oxisol of the Brazilian Cerrados. Chemosphere, 41, 1441-1449.
[13] Tortora, G.J., Funke, B.R. and Case, C.L. (2005) Microbiologia. 8th Edition, Artmed, Porto Alegre. (In Portuguese)
[14] Conselho Nacional Do Meio Ambiente. CONAMA. (National Council of Environment-Conselho Nacional do Meio Ambiente) (2005) Resolucao n°357, de 17 de marco de 2005. Dispoe sobre a classificacao dos corpos de Agua e diretrizes ambientais para o seu enquadramento, bem como estabelece as condicoes e padroes de lancamento de efluentes, e dA outras providencias. DiArio Oficial da Uniao, Brasilia, 17 de marco de 2005.
[15] Esteves, F.A. (1998) Fundamentos de Limnologia. 2nd Edition, Interciencia, Rio de Janeiro, 602 p. (In Portuguese)
[16] Green, J. (1970) Freshwater Ecology in the Mato Grosso, Central Brazil I. The Conductivity of Some Natural Waters. Journal of Natural History, 4, 289-299.
[17] Heckman, C.W. (1994) Pesticide Chemistry and Toxicity to Algae. Ergebnisse der Limnologie, Beiheft, 42, 205-234.
[18] Hardoim, E.L. and Heckman, C.W. (1996) The Seasonal Succession of Biotic Communities in Wetlands of the Tropical Wet-and-Dry Climatic Zone: IV. The Free-Living Sarcodines and Ciliates of the Pantanal of Mato Grosso, Brazil. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 81, 367-384.
[19] Moura, A.N., Wocyly-Dantas, E. and Bittencourt-Oliveira, M.C. (2007) Structure of the Phytoplankton in a Water Supply System in the State of Pernambuco-Brazil. Brazilian Archives of Biology and Technology, 50, 645-654.
[20] Tundisi, J.G. and Matsumura-Tundisi, T. (2008) Limnologia. Oficina de Textos, Sao Paulo, 631 p.
[21] Dores, E.F.G.C. and De-Lamonica-Freire, E.M. (2001) Contaminacao do ambiente aquAtico por pesticidas. estudo de caso: Aguas usadas para consumo humano em Primavera do Leste, Mato Grosso—AnAlise preliminar. Quimica Nova, 24, 27-36.
[22] Calijuri, M.C., Deberdt, G.L.B. and Minote, R.T. (1999) A produtividade primAria pelo fitoplancton na represa de Salto Grande (Americana-SP). In: Henry, R., Ed., Ecologia de reservatorios: Estrutura, funcao e aspectos sociais, FUNDIBIO, FAPESP, Botucatu, 111-148. (In Portuguese)
[23] Vallotton, N., Eggen, R.I.L., Escher, B.I., Krayenbuhl, J. and Chevre, N. (2008) Effect of Pulse Herbicidal Exposure on Scenedesmus vacuolatus: A Comparison of Two Photosystem II Inhibitors. Environmental Toxicology and Chemistry, 27, 1399-1407.
[24] Chiovarou, E.D. and Siewicki, T.C. (2008) Comparison of Storm Intensity and Application Timing on Modeled Transport and Fate of Six Contaminants. Science of the Total Environment, 389, 87-100.
[25] Frighetto, R.T.S. (1997) Impacto Ambiental Decorrentes do Uso de pesticidas Agricolas. In: Melo, I.S. and Azevedo, J.L., Eds., Microbiologia Ambiental, Embrapa-CNPMA, Jaguariúna, 415-438. (In Portuguese)
[26] DeNoyelles, F., Kettle, W.D. and Sinn, D.E. (1982) The Response of Plankton Communities in Experimental Ponds to Atrazine, the Most Heavily Used Pesticide in the United States. Ecology, 63, 1285-1293.
[27] Rohwer, F. and Fluckiger, W. (1979) Effect of Atrazine on Growth, Nitrogen Fixation, and Photosynthetic Rate of Anabaena Cylindrica. Angewandte Botanik, 53, 59-64.
[28] Yadwad, V.B., Kallapur, V.L. and Basalingappa, S. (1990) Inhibition of Gill Na+, K+-ATPase Activity in Dragonfly larva, Pantala flavesens, by Endosulfan. Bulletin of Environmental Contamination and Toxicology, 44, 585-589.
[29] Madigan, M.T., Martinko, J.M. and Parker, J. (1997) Brock Biology of Microorganisms. 8th Edition, Prentice Hall, Upper Saddle River, 166.
[30] Ritcher, C.A. and Azevedo Netto, J.M. (1991) Tratamento de Agua-tecnologia atualizada. Editora Edgard Blucher Ltda, Sao Paulo.
[31] Gomes, J.C. (2001) Poluicao Industrial e Contaminacao Humana no Brasil. ACPO-Associacao de Combate ao POPs, Santos. (In Portuguese)

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.