Design with Ultra Strong Polyethylene Fibers
Roelof Marissen
DOI: 10.4236/msa.2011.25042   PDF   HTML     13,149 Downloads   23,261 Views   Citations


Ultra strong polyethylene fibers can be made by gel-spinning of Ultra High Molecular Weight Polyethylene (UHMWPE). Such fibers exhibit extraordinary properties. They show very high tensile strength and stiffness and low density. On the other hand, the axial and transverse compression strength is low. This is a large difference with other advanced fibers like glass and carbon fibers. Additionally, the fibers are chemically inert and the bonding strength to other materials like resins is weak. Moreover, the coefficient of friction is very low, so the fiber is extremely slippery. Another property is viscoelasticity; the fiber elongates due to creep at higher loads or temperatures. This exceptional combination of properties explains why gel-spun UHMWPE fibers are not always applied in straight forward ways, e.g. like glass and carbon fibers in composites. On the other hand, weaknesses like the limited compression strength are related to very damage tolerant behavior on a micro scale. This opened application areas like providing of cut resistance. This paper describes some established applications and shows the relationship between the properties and the applications. Furthermore, some emerging applications are discussed and it is demonstrated how weaknesses can be turned into advantages.

Share and Cite:

R. Marissen, "Design with Ultra Strong Polyethylene Fibers," Materials Sciences and Applications, Vol. 2 No. 5, 2011, pp. 319-330. doi: 10.4236/msa.2011.25042.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] D. E. Demco, C. Melian, J. Simmelink, V. M. Litvinov and M. M?ller, “Structure and Dynamics of Drawn Gel-Spun Ultra-high-Molecular-Weight Polyethylene Fibers by 1H, 13C and 129XE NMR,” Macromolecular Chemistry and Physics, Vol. 211, No. 24, 2010, pp. 2611-2623. doi:10.1002/macp.201000455
[2] P. Smith and P. J. Lemstra, “Ultrahigh Strength Polyethylene Filaments by Solution Spin-ning/Drawing,” Journal of Materials Science, Vol. 15, No. 2, 1980, pp. 505-514. doi:10.1007/BF02396802
[3] M. J. M. Jacobs, “Creep of Gel-spun Polyethylene Fibres,” Ph.D. Thesis, Eindhoven Uni-versity of Technology, Eindhoven, December 1999.
[4] R. Marissen, L. Smit and C. Snijder, “Dyneema Fibers in Com-posites, the Addition of Special Mechanical Functionalities,” Conference Proceedings, Advancing with Composites 2005, Naples, October 2005.
[5] J. G. H. Bouwmeester, R. Maris-sen and O. K. Bergsma, “Carbon/Dyneema? Intralaminar Hy-brids: New Strategy to Increase Impact Resistance or Decrease Mass of Carbon Fiber Composites,” ICAS2008 Conference Anchorage, Alaska, September 2008.
[6] I. M. Ward and P. J. Hine, “The Science and Technology of Hot Compaction,” Polymer, Vol. 45, No. 5, 2004, pp. 1413-1427. doi:10.1016/j.polymer.2003.11.050
[7] I. M. Ward, P. J. Hine and K. Norris, “Polymeric Materials,” Patent US6277773, Au-gust 2001.
[8] M. P. Vlasblom and J. L. J. van Dingenen, “The Manufacture, Properties and Applications of High Strength, High Modulus Polyethylene Fibers,” In: A. R. Bun-sell, Ed., Handbook of Tensile Properties of Textile and Tech-nical Fibres, Woodhead Publishing Ltd., Cambridge, 2009. doi:10.1533/9781845696801.2.437
[9] P. M. Cunniff, “Di-mensionless Parameters for Optimization of Textile-Based Body Armor Systems,” Proceedings of 18th International Symposium on Ballistics, San Antonio, November, 1999.
[10] M. J. N. Jacobs and J. L. J. van Dingenen, “Ballistic Protection Mechanisms in Personal Armour,” Journal of Mate-rials Science, Vol. 36, No. 13, 2001, pp. 3137-3142. doi:10.1023/A:1017922000090
[11] H. van der Werff, U. Heisserer and S. L. Phoenix, “Modelling of Ballistic Impact on Fiber Composites,” Personal Armour Systems Symposium 2010, Quebec City, September 2010.
[12] H. van der Werff and A. J. Pennings, “Tensile Deformation of High Strength and High Modulus Fibers,” Colloid & Polymer Science, Vol. 269, No. 8, 1991, pp. 747-763. doi:10.1007/BF00657441
[13] J. Wang and K. J. Smith Jr., “The Breaking Strength of Ultra-High Molecular Weight Poly-ethylene Fibers,” Polymer, Vol. 40, No. 26, 1999, pp. 7261-7274. doi:10.1016/S0032-3861(99)00034-8
[14] R. Marissen, D. Duurkoop, H. Hoefnagels and O. K. Bergsma, “Creep-Forming of High Strength Polyethylene Fiber Prepregs for the Produc-tion of Ballistic Protection Helmets,” Composites Science and Technology, Vol. 70, No. 7, 2010, pp. 1184-1188. doi:10.1016/j.compscitech.2010.03.003
[15] S. Shen, A. Henry, J. Tong, R. T. Zheng and G. Chen, “Polyethylene Nanofibres with Very High Thermal Con- ductivities,” Nature Nanotech-nology, Vol. 5, No. 4, March 2010, pp. 251-255. doi:10.1038/nnano.2010.27
[16] K. S. K. Karuppiah, A. L. Bruck, S. Sundararajan, J. Wang, Z. Q. Lin, Z. H. Xu and X. D. Li., “Friction and Wear Behavior of Ultra-High Molecular Weight Polyethylene as a Function of Polymer Crystallinity,” Acta Biomaterialia, Vol. 4, No. 5, 2008, 1401-1410. doi:10.1016/j.actbio.2008.02.022
[17] P. J. H. M. Smeets, M. P. Vlasblom and J. C. Weis, “Latest Improvements on HMPE Rope Design for Steel Wire Rope Applications,” Proceedings, OIPEEC 2009, 3rd International Ropedays, Stuttgart, March 2009.
[18] A. R. Podgaets and W. J. Ockels, “Laddermill Sail: A New Concept in Sailing,” International Conference on engi-neering Technology, ICET 2007, Kuala Lumpur, 11-14 De-cember 2007.
[19] “DSM Dyneema Launches Dyneema Pu-rity? BLUE,”
[20] R. Marissen, E. F. F. de Dan-schuttter and E. Müller, “Cut Resistant Yarn, a Process for Producing the Yarn and Products Containing the Yarn,” Patent WO2008046476, April 2008.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.