[1]
|
Wikipedia, the Free Encyclopaedia (2014) Hyperbolic Geometry. http://en.wikipedia.org/wiki/Hyperbolic_geometry
|
[2]
|
Kolmogorov, A.N. (1991) Mathematics in Its Historical Development (in Russian). Nauka, Moscow.
|
[3]
|
Stakhov, A.P. (2009) The Mathematics of Harmony. From Euclid to Contemporary Mathematics and Computer Science. International Publisher “World Scientific”, New Jersey, London, Singapore, Beijing, Shanghai, Hong Kong, Taipei, Chennai.
|
[4]
|
Stakhov, A.P. (2008) The Mathematics of Harmony: Clarifying the Origins and Development of Mathematics. Congressus Numerantium, CXCIII, 5-48.
|
[5]
|
Wikipedia, the Free Encyclopaedia (2014) Fullerene. http://en.wikipedia.org/wiki/Fullerene
|
[6]
|
Wikipedia, the Free Encyclopaedia (2014) Quasi-Crystal. http://en.wikipedia.org/wiki/Quasicrystal
|
[7]
|
Soroko, E.M. (1984) Structural Harmony of Systems (in Russian). Publishing House “Nauka i Tekhnika,” Minsk.
|
[8]
|
Bodnar, O.Y. (1994) The Golden Section and Non-Euclidean Geometry in Nature and Art (in Russian). Publishing House “Svit”, Lvov.
|
[9]
|
Bodnar, O. (2010) Dynamic Symmetry in Nature and Architecture. Visual Mathematics, 12, 4. http://www.mi.sanu.ac.rs/vismath/BOD2010/index.html
|
[10]
|
Bodnar, O. (2011) Geometric Interpretation and Generalization of the Non-Classical Hyperbolic Functions. Visual Mathematics, 13, 2. http://www.mi.sanu.ac.rs/vismath/bodnarsept2011/SilverF.pdf
|
[11]
|
Bodnar, O. (2012) Minkovski’s Geometry in the Mathematical Modeling of Natural Phenomena. Visual Mathematics, 14, 1. http://www.mi.sanu.ac.rs/vismath/bodnardecembar2011/mink.pdf
|
[12]
|
Wikipedia, the Free Encyclopedia (2014) Hilbert’s Tenth Problem. http://en.wikipedia.org/wiki/Hilbert’s_tenth_problem
|
[13]
|
Petoukhov, S.V. (2006) Metaphysical Aspects of the Matrix Analysis of Genetic Code and the Golden Section. Metaphysics: Century XXI (in Russian). Publishing House “BINOM”, Moscow, 216-250.
|
[14]
|
Stakhov, A.P. and Tkachenko, I.S. (1993) Hyperbolic Fibonacci Trigonometry (in Russian). Reports of the Ukrainian Academy of Sciences, 208, 9-14.
|
[15]
|
Stakhov, A. and Rozin, B. (2004) On a New Class of Hyperbolic Function. Chaos, Solitons & Fractals, 23, 379-389.
|
[16]
|
Stakhov, A. and Rozin, B. (2007) The “Golden” Hyperbolic Models of Universe. Chaos, Solitons & Fractals, 34, 159-171.
|
[17]
|
Stakhov, A.P. and Rozin, B.N. (2006) The Golden Section, Fibonacci Series and New Hyperbolic Models of Nature. Visual Mathematics, 8, 3. http://www.mi.sanu.ac.rs/vismath/stakhov/index.html
|
[18]
|
Stakhov, A.P. (2006) Gazale formulas, a New Class of the Hyperbolic Fibonacci and Lucas Functions, and the Improved Method of the “Golden” Cryptography. Academy of Trinitarizam, Moscow. http://www.trinitas.ru/rus/doc/0232/004a/02321063.htm
|
[19]
|
Stakhov, A. (2013) On the General Theory of Hyperbolic Functions Based on the Hyperbolic Fibonacci and Lucas Functions and on Hilbert’s Fourth Problem. Visual Mathematics, 15, 1. http://www.mi.sanu.ac.rs/vismath/pap.htm)
|
[20]
|
Stakhov, A. and Aranson, S. (2011) Hyperbolic Fibonacci and Lucas Functions, “Golden” Fibonacci Goniometry, Bodnar’s Geometry, and Hilbert’s Fourth Problem. Part I. Applied Mathematics, 2, 74-84. http://www.scirp.org/journal/am/ http://dx.doi.org/10.4236/am.2011.21009
|
[21]
|
Stakhov, A. and Aranson, S. (2011) Hyperbolic Fibonacci and Lucas Functions, “Golden” Fibonacci Goniometry, Bodnar’s Geometry, and Hilbert’s Fourth Problem. Part II. Applied Mathematics, 2, 181-188. http://www.scirp.org/journal/am/ http://dx.doi.org/10.4236/am.2011.22020
|
[22]
|
Stakhov, A. and Aranson, S. (2011) Hyperbolic Fibonacci and Lucas Functions, “Golden” Fibonacci Goniometry, Bodnar’s Geometry, and Hilbert’s Fourth Problem. Part III. Applied Mathematics, 2, 283-293. http://www.scirp.org/journal/am/ http://dx.doi.org/10.4236/am.2011.23033
|
[23]
|
Stakhov, A.P. (2013) Hilbert’s Fourth Problem: Searching for Harmonic Hyperbolic Worlds of Nature. Applied Mathematics and Physics, 1, 60-66. http://www.scirp.org/journal/jamp/.
|
[24]
|
Stakhov, A.P. (1984) Codes of the Golden Proportion (in Russian). Publishing House “Radio and Communications”, Moscow, 1984.
|
[25]
|
Shervatov, V.G. (1958) Hyperbolic Functions (in Russian). Fizmatgiz, Moscow.
|
[26]
|
de Spinadel, V.W. (2004) From the Golden Mean to Chaos. 2nd Edition, Nueva Libreria, Nobuko.
|
[27]
|
Gazale, M.J. (1999) Gnomon. From Pharaohs to Fractals. Princeton University Press, Princeton.
|
[28]
|
Kappraff, J. (2001) Connections. The Geometric Bridge between Art and Science. 2nd Edition, World Scientific, Singapore, New Jersey, London, Hong Kong.
|
[29]
|
Tatarenko, A. (2005) The Golden -Harmonies’ and -fractals (in Russian). Academy of Trinitarism, Moscow. http://www.trinitas.ru/rus/doc/0232/009a/02320010.htm
|
[30]
|
Arakelyan, H. (1989) The Numbers and Magnitudes in Modern Physics (in Russian). Publishing House “Armenian Academy of Sciences”, Yerevan.
|
[31]
|
Shenyagin, V.P. (2011) Pythagoras, or How Everyone Creates His Own Myth. The Fourteen Years after the First Publication of the Quadratic Mantissa’s Proportions (in Russian). Academy of Trinitarism, Moscow. http://www.trinitas.ru/rus/doc/0232/013a/02322050.htm
|
[32]
|
Kosinov, N.V. (2007) The Golden Ratio, Golden Constants, and Golden Theorems (in Russian). Academy of Trinitarism, Moscow. http://www.trinitas.ru/rus/doc/0232/009a/02321049.htm
|
[33]
|
Falcon, S. and Plaza, A. (2007) On the Fibonacci k-numbers. Chaos, Solitons & Fractals, 32, 1615-1624. http://dx.doi.org/10.1016/j.chaos.2006.09.022
|
[34]
|
Wikipedia, the Free Encyclopedia (2014) Pell Number. http://en.wikipedia.org/wiki/Pell_number
|
[35]
|
Stakhov, A.P. (2012) A Generalization of the Cassini Formula. Visual Mathematics, 14, 2. http://www.mi.sanu.ac.rs/vismath/stakhovsept2012/cassini.pdf
|
[36]
|
Aranson, S.Kh. (2000) Qualitative Properties of Foliations on Closed Surfaces. Journal of Dynamical and Control Systems, 6, 127-157. http://dx.doi.org/10.1023/A:1009525823422
|
[37]
|
Aranson, S.Kh. and Zhuzoma, E.V. (2004) Nonlocal Properties of Analytic Flows on Closed Orientable Surfaces. Proceedings of the Steklov Institute of Mathematics, 244, 2-17.
|
[38]
|
Aranson, S., Medvedev, V. and Zhuzhoma, E. (2000) Collapse and Continuity of Geodesic Frameworks of Surface Foliations. In: Andronov-Leontovich, E.A., Ed., Methods of Qualitative Theory of Differential Equations and Related Topics, American Mathematical Society, 200, 35-49.
|
[39]
|
Aranson, S.Kh., Belitsky, E.V. and Zhuzhoma (1996) Introduction to the Qualitative Theory of Dynamical Systems on surfaces. American Mathematical Society.
|
[40]
|
Anosov, D.V., Aranson, S.Kh., Arnold, V.I., Bronshtein, I.U., Grines, V.Z. and Il’yashenko, Yu.S. (1997) Ordinary Differential Equations and Smooth Dynamical Systems. Springer, Berlin.
|
[41]
|
Anosov, D.V., Aranson, S.Kh., Grines, V.Z., Plykin, R.V., Safonov, A.V., Sataev, E.A., Shlyachkov, S.V., Solodov, V.V., Starkov, A.N. and Stepin, A.M. (1995) Dynamical Systems with Hyperbolic Behaviour. Encyclopaedia of Mathematical Sciences. Dynamical Systems IX, 66, Springer, Berlin, 1-235. http://dx.doi.org/10.1007/978-3-662-03172-8
|
[42]
|
Hilbert, D. (1976) Mathematical Developments Arising from Hilbert’s Problems, American Mathematical Society. http://aleph0.clarku.edu/~djoyce/hilbert/problems.html#prob4
|
[43]
|
Alexandrov’s, P.S. (1969) Hilbert’s Problems. Nauka, Moscow.
|
[44]
|
Wikipedia, the Free Encyclopaedia (2003) Hilbert’s Fourth Problem.
|
[45]
|
Busemann, H. (1966) On Hilbert’s Fourth Problem. Russian Mathematical Surveys, 21.
|
[46]
|
Busemann, H. (1966) On Hilbert’s Fourth Problem (in Russian). Uspechi mathematicheskich nauk, 21, 155-164.
|
[47]
|
Pogorelov, A.V. (1974) Hilbert’s Fourth Problem (in Russian). Nauka, Moscow.
|
[48]
|
Aranson, S.Kh. (2009) Once again on Hilbert’s Fourth Problem (in Russian). Academy of Trinitarizm, Мoscow. http://www.trinitas.ru/rus/doc/0232/009a/02321180.htm
|
[49]
|
Yandell, B.H. (2003) The Honors Class-Hilbert’s Problems and Their Solvers.
|
[50]
|
Stakhov, A.P. (2013) Non-Euclidean Geometries. From the “Game of Postulates” to the “Game of Function (in Russian).” Academy of Trinitarizm, Мoscow. http://www.trinitas.ru/rus/doc/0016/001d/00162125.htm
|
[51]
|
Dubrovin, B.A., Novikov, S.P. and Fomenko, A.T. (1979) Modern Geometry. Methods and Applications (in Russian). Nauka, Moscow.
|
[52]
|
Arnold, V.I., II’yashenko, Yu.S., Anosov, D.V., Bronshtein, I.U., Aranson, S.Kh. and Grines, V.Z. (1998) Dynamical Systems I, Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin.
|
[53]
|
Kovantsov, N.I., et al. (1982) Differential Geometry, Topology, Tensor Analysis (in Russian). Higher School, Kiev.
|