The Dominant Role of the Chemical Potential for Driving Currents in Oceans and Air
Albrecht Elsner
Am Mühlbach 14, D-85748 Garching, Germany.
DOI: 10.4236/gep.2014.23016   PDF    HTML     4,265 Downloads   5,311 Views   Citations

Abstract

Applying the thermodynamic zeros of the entropy  and internal energy  of the gas mass  in the volume  yields the numerically unique relation between these quantities, thus allowing calculation of the chemical potential in the gas fields of temperature  and pressure , viz. . A difference in chemical potential provides a force for freely moving matter flow. Since  is intrinsically a negative function, decreasing as the temperature increases, natural flow processes are initiated by high  values in cold regions directed to low

Keywords

Chemical-Potential Temperature Function, Thermo-Mechanical Pressure, Gravitational Pressure, Gulf Stream, Oceanography, Meteorology

Share and Cite:

Elsner, A. (2014) The Dominant Role of the Chemical Potential for Driving Currents in Oceans and Air. Journal of Geoscience and Environment Protection, 2, 117-125. doi: 10.4236/gep.2014.23016.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Allen, J. F., & Jones, H. (1938). New Phenomena Connected with Heat Flow in He-II. Nature, 141, 243-244. http://dx.doi.org/10.1038/141243a0
[2] Apel, J. R. (1987). Principles of Ocean Physics. Academic Press, Chapters 1.2, 2, 3, 4, 6.
[3] Baretta-Bekker, Duursma, & Kuipers (1998). Encyclopedia of Marine Sciences. Springer, 110.
[4] Brockhaus, V. (2012). Wissenswelten: Geografie, Natur, Klima. Mohn Media, 596-600.
[5] Businger, J. A. (1992). Ocean-Atmosphere Dynamics, Equations (1)-(7). In R. A. Meyers, Ed., Encyclopedia of Physical Science and Technology (Vol. 11). Academic Press.
[6] Callen, H.B. (1960). Thermodynamics. John Wiley & Sons, Chapters 3.2, 3.3, 6.4, 16.
[7] Elsner, A. (2012). Applied Thermodynamics of the Real Gas with Respect to the Thermodynamic Zeros of the Entropy and Internal Energy. Physica B: Physics of Condensed Matter, 407, 1055-1067. http://dx.doi.org/10.1016/j.physb.2011.12.118
[8] Oertel Jr., H. (2002). Prandtl-Führer durch die Strömungslehre. Vieweg, 11. Auflage, Chapters 4.1.1, 5.1, 5.2.1, 12.2.4, 12.4.1.
[9] von der Heydt, A. (2011). Die Physik der Ozeanströme. Physik Journal, 10, 23-29.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.