Thermoelectric Properties of Ce0.09Fe0.67Co3.33Sb12/FeSb2Te Multi-Layered Structures

Abstract

Thermoelectric properties of Ce0.09Fe0.67Co3.33Sb12/FeSb2.1Te multi-layered structures with period of 5 nm were studied in temperature ranging from 300 K to 500 K. Structures were prepared by Pulsed Laser Deposition (PLD) on fused sili- ca quartz glass substrates at the substrate temperature during the deposition Ts = 230°C and Ts = 250°C with the laser beam energy density Ds = 3 Jcm-2. In the contribution temperature dependencies of the in-plane electrical conductivity, the Seebeck coefficient and the resultant power factor together with room temperature value of thermoelectric figure of merit are presented.

Share and Cite:

Zeipl, R. , Jelínek, M. , Walachová, J. , Kocourek, T. and Vlček, M. (2013) Thermoelectric Properties of Ce0.09Fe0.67Co3.33Sb12/FeSb2Te Multi-Layered Structures. Journal of Computer and Communications, 1, 1-4. doi: 10.4236/jcc.2013.17001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] X. F .Tang, L. Chen, T. Goto, T. Hirai and R. Z. Yuan, “Synthesis and Thermoelectric Properties of Filled Skutterudite Compounds CeyFexCo4xSb12 by Solid State Reaction,” Journal of Materials Science, Vol. 36, No. 22, 2001, pp. 5435-5439. http://dx.doi.org/10.1023/A:1012473428845
[2] X. F. Tang, Q. Zhang, L. Chen, T. Goto and T. Hirai, “Synthesis and Thermoelectric Properties of Type-and-Type-Filled Skutterudite,” Journal of Applied Physics, Vol. 97, No. 9, 2005, Article ID: 093712. http://dx.doi.org/10.1063/1.1888048
[3] B. C. Sales, D. Mandrus, B. C. Chakoumakos, V. Keppens and J. R. Thompson, “Filled Skutterudite Antimonides: Electron Crystals and Phonon Glasses,” Physical Review B, Vol. 56, No. 23, 1997, pp. 15081-15089. http://dx.doi.org/10.1103/PhysRevB.56.15081
[4] P. Pichanusakorn and P. R. Bandaru, “Nanostructured Thermoelectrics,” Materials Science and Engineering: R: Reports, Vol. 67, No. 2-4, 2010, pp. 19-63. http://dx.doi.org/10.1016/j.mser.2009.10.001
[5] L. D. Hicks and M. S. Dresselhaus, “Effect of Quantum Well Structures on the Thermoelectric Figure of Merit,” Physical Review B, Vol. 47, No. 19, 1993, pp. 12727-12731. http://dx.doi.org/10.1103/PhysRevB.47.12727
[6] L. D. Hicks and M. S. Dresselhaus, “Thermoelectric Figure of Merit of a One-Dimensional Conductor,” Physical Review B, Vol. 47, No. 24, 1993, pp. 16631-16634. http://dx.doi.org/10.1103/PhysRevB.47.16631
[7] L. D. Hicks, T. C. Harman, X. Sun and M. S. Dresselhaus, “Experimental Study of the Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit,” Physical Review B, Vol. 53, No. 16, 1996, pp. 10493-10496. http://dx.doi.org/10.1103/PhysRevB.53.R10493
[8] L. D. Hicks, T. C. Harman, X. Sun and M. S. Dresselhaus, “Experimental Study of the Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit,” Proceeding of 15th International Conference on Thermoelectrics, Pasadena, 26-29 March1996, pp. 450-453. http://dx.doi.org/10.1109/ICT.1996.553525
[9] H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono and K. Koumoto, “Giant Thermoelectric Seebeck Coefficient of a Two-Dimensional Electron Gas in SrTiO3,” Nature Materials, Vol. 6, 2007, pp. 129-134. http://dx.doi.org/10.1038/nmat1821
[10] M. Dragoman and D. Dragoman, “Giant Thermoelectric Effect in Graphene,” Applied Physics Letters, Vol. 91, No. 20, 2007, Article ID: 203116. http://dx.doi.org/10.1063/1.2814080
[11] R. Venkatasubramanian, E. Siivola, T. Colpitts and B. O. Quinn, “Thin Film Thermoelectric Devices with High Room Temperature Figures of Merit,” Nature, Vol. 413, 2001, pp. 597-602. http://dx.doi.org/10.1038/35098012
[12] W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri and A. Majumdar, “Thermal Conductivity Reduction and Thermoelectric Figure of Merit Increase by Embedding Nanoparticles in Crystalline Semiconductors,” Physical Review Letters, Vol. 96, No. 4, 2006, Article ID: 045901. http://dx.doi.org/10.1103/PhysRevLett.96.045901
[13] I. Yamasaki, R. Yamanaka, M. Mikami, H. Sonobe, Y. Mori and T. Sasaki, Proceeding of 17th International Conference on Thermoelectrics, Nagoya, 24-28 May 1998, p. 210.
[14] D. W. Song, W. L. Liu, T. Zeng, T. Borca Tasciuc, G. Chen, J. C. Caylor and T. D. Sands, “Thermal Conductivity of Skutterudite Thin Films and Superlattices,” Applied Physics Letters, Vol. 77, No. 23, 2000, p. 3854 http://dx.doi.org/10.1063/1.1329633
[15] R. Zeipl, J. Walachova, J. Lorincik, S. Leshkov, M. Josiekova, M. Jelinek, T. Kocourek, K. Jurek, J. Navratil, L. Benes and T. Plechacek, “Properties of Thin N-type Yb0.14Co4Sb12 and P-type Ce0.09Fe0.67Co3.33Sb12 Skutterudite Layers Prepared by Laser Ablation,” Journal of Vacuum Science & Technology A, Vol. 28, No. 4, 2010, p. 523. http://dx.doi.org/10.1116/1.3425803
[16] J. P. Fleurial, US Patent 5747728, 5 May 1998.
[17] J. P. Fleurial, Proceeding of 16th International Conference on Thermoelectrics, Dresden, 26-29 August 1997, p. 91.
[18] D. T. Morelli, G. P. Meisner, B. Chen, S. Hu and C. Uher, “Cerium Filling and Doping of Cobalt Triantimonide,” Physical Review B, Vol. 56, No. 12, 1997, pp. 7376-7383. http://dx.doi.org/10.1103/PhysRevB.56.7376

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.