The Acute Administration of Carnosine and Beta-Alanine Does Not Improve Running Anaerobic Performance and has No Effect on the Metabolic Response to Exercise

Abstract

An increase in muscle carnosine content, following its chronic supplementation, has been shown to im- prove anaerobic performance. In addition, carnosine can affect plasma glucose concentration and insulin response. However, it is not clear whether the acute ingestion of carnosine can have the same effects. Aim of this study was to investigate the acute effects of carnosine ingestion on anaerobic intermittent per- formance and the responses of blood insulin, glucose, bicarbonate and lactate concentrations to exercise. Twelve healthy, young, active participants (BMI 23.5 ± .6, age: 22 ± 2 years) underwent in two separate occasions (double-blind, randomized, crossover design) the running-based anaerobic test (RAST), con- sisting of 6 × 35-m sprints interspersed with 10 s rest after acute (4 hours before the test) ingestion of ei- ther 1 g of L-carnosine and 1 g of β-alanine or placebo. None significant difference was found between the acute ingestion of carnosine and the placebo conditions in terms of running performance (30.0 ± .8 and 29.8 ± .8, p = .302), perceptual response to exercise (RPE), blood lactate, insulin (23.8 ± 13.0 and 19.5 ± 9.0 μU·ml-1, p = .329), blood glucose (109 ± 23 and 104 ± 12 mg·dl-1, p = .969), and blood bicarbonates (16 ± 2 and 16 ± 2 mEq·l-1, p = .277). In conclusion, the acute ingestion of carnosine had no effect on performance, perceptual response to exercise, blood lactate concentration, insulin, glucose, and bicarbonates responses to exercise compared to a placebo treatment. It is not clear whether these results may be attributed to an insufficient dose of carnosine or to a lack of acute effect per sé.

Share and Cite:

Invernizzi, P. , Benedini, S. , Saronni, S. , Merati, G. & Bosio, A. (2013). The Acute Administration of Carnosine and Beta-Alanine Does Not Improve Running Anaerobic Performance and has No Effect on the Metabolic Response to Exercise. Advances in Physical Education, 3, 169-174. doi: 10.4236/ape.2013.34028.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Aldini, G., Orioli, M., Rossoni, G., Savi, F., Braidotti, P., Vistoli, G., Yeum, K. J., Negrisoli, G., & Carini, M. (2001). The carbonyl scavenger carnosine ameliorates dyslipidaemia and renal function in Zucker obese rats. Journal of Cellular and Molecular Medicine, 15, 1339-1354. http://dx.doi.org/10.1111/j.1582-4934.2010.01101.x
[2] Alhamdani, M. S., Al-Azzawie, H. F., & Abbas, F. K. (2007). Decreased formation of advanced glycation end-products in peritoneal fluid by carnosine and related peptides. Peritoneal Dialysis International, 27, 86-89.
[3] Allen, D. G., Lamb, G. D., & Westerblad, H. (2008). Skeletal muscle fatigue: Cellular mechanisms. Physiological Reviews, 88, 287-332.
http://dx.doi.org/10.1152/physrev.00015.2007
[4] Baguet, A., Bourgois, J., Vanhee, L., Achten, E., & Derave, W. (2010). Important role of muscle carnosine in rowing performance. Journal of Applied Physiology, 109, 1096-1101.
http://dx.doi.org/10.1152/japplphysiol.00141.2010
[5] Begum, G., Cunliffe, A., & Leveritt, M. (2005). Physiological role of carnosine in contracting muscle. International Journal of Sport Nutrition and Exercise Metabolism, 15, 493-514.
[6] Borg, G. (1998). Borg’s perceived exertion and pain scales. Champaign, IL: Human Kinetics.
[7] Buse, M. G., Weigand, D. A., Peeler, D., & Hedden, M. P. (1980). The effect of diabetes and the redox potential on amino acid content and release by isolated rat hemidiaphragms. Metabolism, 29, 605-616.
http://dx.doi.org/10.1016/0026-0495(80)90104-3
[8] Derave, W., Everaert, I., Beeckman, S., & Baguet, A. (2010). Muscle carnosine metabolism and beta-alanine supplementation in relation to exercise and training. Sports Medicine, 40, 247-263.
http://dx.doi.org/10.2165/11530310-000000000-00000
[9] Derave, W., Ozdemir, M. S., Harris, R. C., Pottier, A., Reyngoudt, H., Koppo, K., Wise, J. A., & Achten, E. (2007). Beta-alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. Journal of Applied Physiology, 103, 1736-1743.
http://dx.doi.org/10.1152/japplphysiol.00397.2007
[10] Di Pierro, F., Bertuccioli, A., Bressan, A., & Rapacioli, G. (2011). Carnosine-based supplement. Nutrafoods, 1, 43-47.
http://dx.doi.org/10.1007/BF03223387
[11] Dutka, T. L., & Lamb, G. D. (2004). Effect of carnosine on excitationcontraction coupling in mechanically-skinned rat skeletal muscle. Journal of Muscle Research and Cell Motility, 25, 203-213.
http://dx.doi.org/10.1023/B:JURE.0000038265.37022.c5
[12] Foster, C., Florhaug, J. A., Franklin, J., Gottschall, L., Hrovatin, L. A., Parker, S., Doleshal, P., & Dodge, C. (2001). A new approach to monitoring exercise training. The Journal of Strength & Conditioning Research, 15, 109-115.
[13] Gardner, M. L., Illingworth, K. M., Kelleher, J., & Wood, D. (1991). Intestinal absorption of the intact peptide carnosine in man, and comparison with intestinal permeability to lactulose. The Journal of Physiology, 439, 411-422.
[14] Harris, R. C., Wise, J. A., Price, K. A., Kim, H. J., Kim, C. K., & Sale, C. (2012). Determinants of muscle carnosine content. Amino Acids, 43, 5-12. http://dx.doi.org/10.1007/s00726-012-1233-y
[15] Hill, C. A., Harris, R. C., Kim, H. J., Harris, B. D., Sale, C., Boobis, L. H., Kim, C. K., & Wise, J. A. (2007). Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids, 32, 225-233.
http://dx.doi.org/10.1007/s00726-006-0364-4
[16] Hipkiss, A. R. (2009). Carnosine and its possible roles in nutrition and health. Advances in Food and Nutrition Research, 57, 87-154.
http://dx.doi.org/10.1016/S1043-4526(09)57003-9
[17] Hobson, R. M., Saunders, B., Ball, G., Harris, R. C., & Sale, C. (2012). Effects of beta-alanine supplementation on exercise performance: A meta-analysis. Amino Acids, 43, 25-37.
http://dx.doi.org/10.1007/s00726-011-1200-z
[18] Impellizzeri, F. M., Rampinini, E., Coutts, A. J., Sassi, A., & Marcora, S. M. (2004). Use of RPE-based training load in soccer. Medicine & Science in Sports & Exercise, 36, 1042-1047.
http://dx.doi.org/10.1249/01.MSS.0000128199.23901.2F
[19] Jagim, A. R., Wright, G. A., Brice, A. G., & Doberstein, S. T. (2013). Effects of beta-alanine supplementation on sprint endurance. The Journal of Strength & Conditioning Research, 27, 526-532.
http://dx.doi.org/10.1519/JSC.0b013e318256bedc
[20] Kraemer, W. J., Gordon, S. E., Lynch, J. M., Pop, M. E., & Clark, K. L. (1995). Effects of multibuffer supplementation on acid-base balance and 2,3-diphosphoglycerate following repetitive anaerobic exercise. Journal of the International Society of Sports Nutrition, 5, 300-314.
[21] Margolis, F. L., Grillo, M., Kawano, T., & Farbman, A. I. (1985). Carnosine synthesis in olfactory tissue during ontogeny: Effect of exogenous beta-alanine. Journal of Neurochemistry, 44, 1459-1464.
http://dx.doi.org/10.1111/j.1471-4159.1985.tb08783.x
[22] Nagai, K., Niijima, A., Yamano, T., Otani, H., Okumra, N., Tsuruoka, N., Nakai, M., & Kiso, Y. (2003). Possible role of L-carnosine in the regulation of blood glucose through controlling autonomic nerves. Experimental Biology and Medicine, 228, 1138-1145.
[23] Nagai, K., Tanida, M., Niijima, A., Tsuruoka, N., Kiso, Y., Horii, Y., Shen, J., & Okumura, N. (2012). Role of L-carnosine in the control of blood glucose, blood pressure, thermogenesis, and lipolysis by autonomic nerves in rats: Involvement of the circadian clock and histamine. Amino Acids, 43, 97-109.
http://dx.doi.org/10.1007/s00726-012-1251-9
[24] Shao, L., Li, Q. H., & Tan, Z. (2004). L-carnosine reduces telomere damage and shortening rate in cultured normal fibroblasts. Biochemical and Biophysical Research Communications, 324, 931-936.
http://dx.doi.org/10.1016/j.bbrc.2004.09.136
[25] Smith, E. C. (1938). The buffering of muscle in rigor; protein, phosphate and carnosine. The Journal of Physiology, 92, 336-343.
[26] Suzuki, Y., Ito, O., Mukai, N., Takahashi, H., & Taka-Matsu, K. (2002). High level of skeletal muscle carnosine contributes to the latter half of exercise performance during 30-s maximal cycle ergometer sprinting. Japanese Journal of Physiology, 52, 199-205.
http://dx.doi.org/10.2170/jjphysiol.52.199
[27] Suzuki, Y., Nakao, T., Maemura, H., Sato, M., Kama-Hara, K., Morimatsu, F., & Takamatsu, K. (2006). Carnosine and anserine ingestion enhances contribution of nonbicarbonate buffering. Medicine & Science in Sports & Exercise, 38, 334-338.
[28] Yamano, T., Niijima, A., Iimori, S., Tsuruoka, N., Kiso, Y., & Nagai, K. (2001). Effect of L-carnosine on the hyperglycemia caused by intracranial injection of 2-deoxy-D-glucose in rats. Neuroscience Letters, 313, 78-82. http://dx.doi.org/10.1016/S0304-3940(01)02231-5
[29] Zagatto, A. M., Beck, W. R., & Gobatto, C. A. (2009). Validity of the running anaerobic sprint test for assessing anaerobic power and predicting short-distance performances. The Journal of Strength & Conditioning Research, 23, 1820-1827.
http://dx.doi.org/10.1519/JSC.0b013e3181b3df32

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.