Unusual Dielectric Loss Properties of Carbon Nanotube—Polyvinylidene Fluoride Composites in Low Frequency Region (100 Hz < f < 1 MHz)


Systematic investigations on the dielectric properties of multi-walled carbon nanotubes (MWNTs)-polyvinylidene fluoride (PVDF) composites with a wide MWNT concentration range (2 - 9 wt%) have been carried out. It is revealed that the dielectric constant is increased by the addition of an appropriate amount of MWNTs at room temperature. However, when the concentration of MWNTs in the composites reaches above 5 wt%, negative dielectric constants and large dielectric loss in the composites are observed in the low frequency range. The ferroelectric CNT-PVDF polymer composites containing more than 5 wt% MWNTs have a strong dielectric absorption, which has the potential for acoustic applications.

Share and Cite:

Y. Zhen, J. Arredondo and G. Zhao, "Unusual Dielectric Loss Properties of Carbon Nanotube—Polyvinylidene Fluoride Composites in Low Frequency Region (100 Hz < f < 1 MHz)," Open Journal of Organic Polymer Materials, Vol. 3 No. 4, 2013, pp. 99-103. doi: 10.4236/ojopm.2013.34016.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Q. M. Zhang, H. F. Li, M. Poh, F. Xia, Z. Y. Cheng, H. S. Xu and C. Huang, “An All-Organic Composite Actuator Material with a High Dielectric Constant,” Nature, Vol. 419, 2002, pp. 284-287. http://dx.doi.org/10.1038/nature01021
[2] C. Huang, R. Klein, F. Xia, H. Li, Q. M. Zhang, F. Bauer and Z. Y. Cheng, “Poly(vinylidene Fluoride-Trifluoroethylene) Based High Performance Electroactive Polymers,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 11, No. 2, 2004, pp. 299-311. http://dx.doi.org/10.1109/TDEI.2004.1285901
[3] H. J. Kawai, “The Piezoelectricity of Poly(vinylidene Fluoride), “The Piezoelectricity of Poly (vinylidene Fluoride),” Japanese Journal of Applied Physics, Vol. 8, 1969, pp. 975-976. http://dx.doi.org/10.1143/JJAP.8.975
[4] M. G. Broadhurst and G. T. Davis, “Physical Basis for Piezoelectricity in PVDF,” Ferroelectrics, Vol. 60, No. 1, 1984, pp. 3-13. http://dx.doi.org/10.1080/00150198408017504
[5] S. Ahmed and F. R. Jones, “A Review of Particulate Re- inforcement Theories for Polymer Composites,” Journal of Materials Science, Vol. 25, No. 12, 1990, pp. 4933- 4942. http://dx.doi.org/10.1007/BF00580110
[6] R. Jr. Gregorio and M. Cestari, “Effect of Crystallization Temperature on the Crystalline Phase Content and Morphology of Poly(vinylidene Fluoride),” Journal of Polymer Science, Part B: Polymer Physics, Vol. 32, No. 5, 1994, pp. 859-870. http://dx.doi.org/10.1002/polb.1994.090320509
[7] L. Wang and Z-.M. Dang, “Carbon Nanotube Composites with High Dielectric Constant at Low Percolation Shreshold,” Applied Physics Letters, Vol. 87, No. 4, 2005, Arti- cle ID: 042903. http://dx.doi.org/10.1063/1.1996842
[8] J. K. Yuan, W. L. Li, S. H. Yao, Y. Q. Lin, A. Sylvestre and J. B. Bai, “High Dielectric Permittivity and Low Percolation Threshold in Polymer Composites Based on SiC- Carbon Nanotubes Micro/Nano Hybrid,” Applied Physics Letters, Vol. 98, No. 3, 2011, Article ID: 032901. http://dx.doi.org/10.1063/1.3544942
[9] S. H. Zhang, N. Y. Zhang, H. Cheng, K. L. Ren and Q. M. Zhang, “Microstructure and Electromechanical Properties of Carbon Nanotube/Poly(vinylidene Fluoride-Trifluoroe- thylene-Chlorofluoroethylene) Composites,” Advanced Materials, Vol. 17, No. 15, 2005, pp. 1897-1901. http://dx.doi.org/10.1002/adma.200500313
[10] J. K. Yuan, S. H. Yao, Z. M. Dang, A. Sylvestre, M. Genestoux and J. B. Bai, “Giant Dielectric Permittivity Nanocoposites: Realizing True Potential of Pristine Carbon Nanotubes in Polyvinylidene Fluoride Matrix through an Enhanced Interfacial Interaction,” The Journal of Physical Chemistry C, Vol. 115, No. 13, 2011, pp. 5515-5521. http://dx.doi.org/10.1021/jp1117163
[11] C. K. Chiang and R. Popielarz, “Polymer Composites with High Dielectric Constant,” Ferroelectrics, Vol. 275, No. 1, 2002, pp. 1-9. http://dx.doi.org/10.1080/00150190214285
[12] G. C. Psarras, K. G. Gatos, P. K. Karahaliou, S. N. Georga, C. A. Krontiras and J. Karger-Kocsis, “Relaxation Phenomena in Rubber/Layered Silicate Nanocomposites,” eXPRESS Polymer Letters, Vol. 1, 2007, pp. 837-845. http://dx.doi.org/10.3144/expresspolymlett.2007.116
[13] H. Ishida, S. Campbell and J. Blackwell, “General Ap- proach to Nanocomposite Preparation,” Chemistry of Materials, Vol. 12, No. 5, 2000, pp. 1260-1267. http://dx.doi.org/10.1021/cm990479y
[14] Q. Li, Q. Z. Xue, X. L. Gao and Q. B. Zheng, “Temperature Dependence of the Electrical Properties of the Carbon Nanotube/Polymer Composites,” eXPRESS Polymer Letters, Vol. 3, 2009, pp. 769-777. http://dx.doi.org/10.3144/expresspolymlett.2009.95
[15] C. V. Chanmal and J. P. Jog, “Dielectric Relaxations in PVDF/BaTiO3 Nanocomposites,” eXPRESS Polymer Letters, Vol. 2, 2008, pp. 294-301. http://dx.doi.org/10.3144/expresspolymlett.2008.35
[16] J. J. Liu, C. G. Duan, W. G. Yin, W. N. Mei, R. W. Smith and J. R. Hardy, “Dielectric Permittivity and Electric Modulus in Bi2Ti4O11,” Journal of Chemical Physics, Vol. 119, 2003, pp. 2812-2819. http://dx.doi.org/10.1063/1.1587685

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.