Features of the formation and nanostructure of the film with the basic hexagonal phase TiN0.3 by arc evaporation
Anna L. Kameneva, L'ybov N. Guselnikova, Tatyana O. Soshina
DOI: 10.4236/jbpc.2011.21004   PDF   HTML     4,723 Downloads   8,751 Views   Citations


Forming and nanostructuring processes of TiN film by electric arc evaporation under the conditions of the reactive nitrogen gas deficit in the gas mixture (30%) have been investigated. The results of a technological experiment, electron microscopic examination, X-ray diffraction phase analysis and mechanical testing of the film revealed that a significant increase in ion density and mobility leads to deterioration of the formation temperature conditions, structural and phase changes in TiN film and change of the main cubic phase (111)TiN on a hexagonal (101)TiN0.3. In the end repeated decrease of the the film microhardness with (101)TiN0.3 was caused not only by erosion of the film, but also because of change in the processes of its formation and nanostructuring in comparison with similar processes of the film with (111)TiN.

Share and Cite:

Kameneva, A. , Guselnikova, L. and Soshina, T. (2011) Features of the formation and nanostructure of the film with the basic hexagonal phase TiN0.3 by arc evaporation. Journal of Biophysical Chemistry, 2, 26-31. doi: 10.4236/jbpc.2011.21004.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Zhang, Y.J., Yan, P.X., Wu, Z.G., Zhang, W.W., Zhang, G.A., Liu, W.M. and Xue, Q.J. (2005) Effects of substrate bias and argon flux on the structure of titanium nitride films deposited by filtered cathodic arc plasma. Physica status solidi (a), 202(1), 95-101. doi:10.1002/pssa.200406902
[2] Kameneva, A.L., Soshina, T.O. and Guselnikova, L.N. (2010) Effects of substrate voltage bias on forming stages of polycrystalline titanium nitride films by arc spraying. Materials of XIII International conference High Technology in Russian Industry, 392-401.
[3] Belyanin, A.F. and Samoylovich, (2004) M.I. Nanostructures and photon crystals. CRTI, Moscow.
[4] Mayrhofer, P.H., Kunc, F., Musil J. and Mitterer, C. (2002) A comparative study on reactive and non-reactive unbalanced magnetron sputter deposition of TiN coatings. Thin Solid Films, 415(9), 151-159. doi:10.1016/S0040-6090(02)00511-4
[5] Musil, J. (2000) Hard and superhard nanocomposite coatings. Surface and Coatings Technology, 125(1-3), 322-330. doi:10.1016/S0257-8972(99)00586-1
[6] Veprek, S. (1999) The search for novel superhard materials. Journal Vacuum Science Technology, A, 17(5), 2401- 2020. doi:10.1116/1.581977
[7] Voevodin, A.A., Zabinski, J.S. (2000) Supertough wear-resistant coatings with ‘chameleon’ surface adaptation. Thin Solid Films, 370(1-2), 223-231. doi:10.1016/S0040-6090(00)00917-2
[8] Petrov, I., Varna, P.B., Hultman, L., Greene, J.E. (2003) Microstructural evolution during film growth. Journal Vacuum Science Technology, A, 21( 5), 117-128. doi:10.1116/1.1601610
[9] Thornton, J. (1977) High-rate thick-?lm growth. Annual Review of Materials Research, 7, 239-260. 10.1146/annurev.ms.07.080177.001323
[10] Messier, R., Giri, A.P. and Roy, R.A. (1984) Revised structure zone model for thin film physical structure. Journal Vacuum Science Technology, A, 2, 500-503. doi:10.1116/1.572604
[11] Thornton, J. A. (1986) The microstructure of sputter-deposited coatings. Journal Vacuum Science Technology, A, 4(6), 3059-3056. doi:10.1116/1.573628
[12] Barna, P.B. and Adamik, M. (1998) Fundamental structure forming phenomena of policrystalline films and the structure zone models. Thin Solid Films, 317, 27-33. doi:10.1016/S0040-6090(97)00503-8
[13] Kadlec, S., Musil, J. and Vysko?il, J. (1992) Growth and properties of hard coating prepared by physical vapor deposition methods. Surface and Coatings Technology, 54-55, 287-296. doi:10.1016/S0257-8972(09)90064-0
[14] Hultman, L. (2000) Thermal stability of nitride thin films. Vacuum, 57(1), 1-30. doi:10.1016/S0042-207X(00)00143-3
[15] Bunshah, R.F. (1994) Handbook of Deposition technologies for films and coatings: Science, technology and applications. 2nd Edition, Noyes Publications, Park Ridge.
[16] Maissel, L.I. (1983) Handbook of thin films. McGraw- Hill, New York
[17] Messier, R. (1986). Toward quantification of thin film morphology. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 4(3), 490-495. doi:10.1116/1.573866
[18] Louro, C., Cavaleiro, A., Dub, S., Smid, P., Musil, J. and Vlcek, J. (2002) The depth profile analysis of W-Si-N coatings after thermal annealing. Surface and Coatings Technology, 161(2-3), 111-119. doi:10.1016/S0257-8972(02)00325-0
[19] Stüber, M., Leiste, H., Ulrich, S., Holleck, H. and Schild, D. (2002) Microstructure and properties of low friction TiC-C nanocomposite coatings deposited by magnetron sputtering. Surface and Coatings Technology, 150(2-3), 218-226. doi:10.1016/S0257-8972(01)01493-1
[20] Andrievski, R.A. and Kalinnikov, G.V. (2001) Physical-mechanical and physical-chemical properties of thin nanostructured boride/nitride films. Surface and Coatings Technology, 142-144, 573-578. doi:10.1016/S0257-8972(01)01246-4
[21] Antsiferov V.N. and Kameneva, A.L. (2007) Experimental study of the structure of multicomponent nanostructured coatings on the basis of Ti-Zr-N alloys formed by ionic plasma methods. Russian Journal of Non-Ferrous Metals, 48(6), 488-495. doi:10.3103/S1067821207060211
[22] Shtansky D.V., Kaneko K., Ikuhara Y. and Levashov. (2001) Characterization of nanostructured multiphase Ti-Al-B-N thin films with extremely small grain size. Surface and Coatings Technology, 148(2-3), 206-215. doi:10.1016/S0257-8972(01)01341-X
[23] Shtansky, D.V., Levashov, E.A., Sheveiko, A.N. and Moore, J.J. (1999) Synthesis and Characterization of Ti-Si-C-N Films. Metallurgical and Materials Transaction A, 30(9), 2439-2447. doi:10.1007/s11661-999-0252-0
[24] Gupper, A., Fernandez, A., Fernandez-Ramos, С., Hofer, F., Mitterer, С. and Warbichler, P. (2002) Characterization of nanocomposite coatings in the system Ti-B-N by analytical electron microscopy and X-ray photoelectron spectroscopy. Chemical Monthly, 133(6), 837-848. doi:10.1007/s007060200056
[25] Mollart, T.P., Gibson, P.N. and Baker, M.A. (1997) An EXAFS and XRD Study of the Structure of Nanocrystalline Ti-B-N Thin Films. Journal of Physics D: Applied Physics, 30(13), 1827-1832. doi:10.1088/0022-3727/30/13/001
[26] Gissler, W. (1994) Structure and properties of Ti-B-N coatings. Surface and Coatings Technology, 68/69, 556-563. doi:10.1016/0257-8972(94)90217-8
[27] Musil, J., Kunc, F., Zeman, H. and Polakova, H. (2002) Relationships between hardness, Young’s modulus and elastic recovery in hard nanocomposite coatings. Surface and Coatings Technology, 154(2-3), 304-313. doi:10.1016/S0257-8972(01)01714-5

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.