Enhanced Electrochemical Capacitance of Nitrogen-Doped Carbon Nanotubes Synthesized from Amine Flames
Lingmin Liao, Chunxu Pan
.
DOI: 10.4236/snl.2011.11004   PDF    HTML     8,615 Downloads   17,459 Views   Citations

Abstract

This paper presents a new process for synthesizing a kind of nitrogen- doped carbon nanotubes (N-CNTs) with primarily a ‘graphite-like’ structure at N substitutions from flames using n-propylamine and n-butylamine as fuels. When the N-CNTs are used as the supercapacitor electrode materials, they exhibit a much larger capacitance than the regular carbon nanotubes (CNTs). It is proposed that the high proportional ‘graphite-like’ N dopant in the as-grown N-CNTs improves their surface chemical activity and conductivity and then results in a desirable performance for electro-chemical capacitors.

Share and Cite:

L. Liao and C. Pan, "Enhanced Electrochemical Capacitance of Nitrogen-Doped Carbon Nanotubes Synthesized from Amine Flames," Soft Nanoscience Letters, Vol. 1 No. 1, 2011, pp. 16-23. doi: 10.4236/snl.2011.11004.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. Burke, “Ultracapacitors: Why, How, and Where is the Technology,” Journal of Power Sources, Vol. 91, No. 1, 2000, pp. 37-50. doi:10.1016/S0378-7753(00)00485-7
[2] E. Frackowiak, K. Metenier, V. Bertagna and F. Beguin, “Supercapacitor Electrodes from Multiwalled Carbon Nanotubes,” Applied Physics Letters, Vol. 77, No. 15, 2000, pp. 2421-2423. doi:10.1063/1.1290146
[3] H. J. Kim, K. K. Jeon, K. H. An, C. Kim, J. G. Heo, S. C. Lim, D. J. Bae and Y. H. Lee, “Exfoliation of Single- Walled Carbon Nanotubes by Electrochemical Treatment in a Nitric Acid,” Advanced Materials, Vol. 15, No. 20, 2003, pp. 1757-1760. doi:10.1002/adma.200304942
[4] K. H. An, W. S. Kim, Y. S. Park, Y. C. Choi, S. M. Lee, D. C. Chung, D. J. Bae, S. C. Lim and Y. H. Lee, “Supercapacitors Using Single-Walled Carbon Nanotube Electrodes,” Advanced Materials, Vol. 13, No. 7, 2001, pp. 497-500. doi:10.1002/1521-4095(200104)13:7<497::AID-ADMA497>3.0.CO;2-H
[5] E. Raymundo-Pi?ero, D. Cazorla-Amorós, A. Linares- Solano, S. Delpeux, E. Frackowiak, K. Szostak and F. Beguin, “High Surface Area Carbon Nanotubes Prepared by Chemical Activation,” Carbon, Vol. 40, No. 9, 2002, pp. 1614-1617. doi:10.1016/S0008-6223(02)00134-3
[6] W. Li, D. Chen, Z. Li, Y. Shi, Y. Wan, G. Wang, Z. Jiang and D. Zhao, “Nitrogen-Containing Carbon Spheres with very Large Uniform Mesopores: The Superior Electrode Materials for EDLC in Organic Electrolyte,” Carbon, Vol. 45, No. 9, 2007, pp. 1757-1763. doi:10.1016/j.carbon.2007.05.004
[7] K. Y. Kang, S. J. Hong, B. I. Lee and J. S. Lee, “Enhanced Electrochemical Capacitance of Nitrogen-Doped Carbon Gels Synthesized by Microwave-Assisted Polymerization of Resorcinol and Formaldehyde,” Electrochemistry Communications, Vol. 10, No. 7, 2008, pp. 1105-1108. doi:10.1016/j.elecom.2008.05.029
[8] M. Terrones, P. M. Ajayan, F. Banhart, X. Blase, D. L. Carroll, J. C. Charlier, R. Czerw, B. Foley, N. Grobert, R. Kamalakaran, P. Kohler-Redlich, M. Rühle, T. Seeger and H. Terrones, “N-Doping and Coalescence of Carbon Nanotubes: Synthesis and Electronic Properties,” Applied Physics A, Vol. 74, No. 3, 2002, pp. 355-361. doi:10.1007/s003390201278
[9] R. Czerw, M. Terrones, J. C. Charlier, X. Blasé, B. Foley, R. Kamalakaran, N. Grobert, H. Terrones, D. Tekleab, P. M. Ajayan, W. Blau, M. Rühle, D. L. Carroll, “Identification of Electron Donor States in N-Doped Carbon Nanotubes,” Nano Letters, Vol. 1, No. 9, 2001, pp. 457-460. doi:10.1021/nl015549q
[10] J. W. Jang, C. E. Lee, S. C. Lyu, T. J. Lee and C. J. Lee, “Structural Study of Nitrogen-Doping Effects in Bamboo- shaped Multiwalled Carbon Nanotubes,” Applied physics letters, Vol. 84, No. 15, 2004, pp. 2877-2879. doi:10.1063/1.1697624
[11] M. Zhao, Y. Xia, J. P. Lewis and R. Zhang, “First-Principles Calculations for Nitrogen-Containing Single-Walled Carbon Nanotubes,” Journal of Applied Physics, Vol. 94, No. 4, 2003, pp. 2398-2402. doi:10.1063/1.1593798
[12] J. D. Wiggins-Camacho and K. J. Stevenson, “Effect of Nitrogen Concentration on Capacitance, Density of States, Electronic Conductivity, and Morphology of N-Doped Carbon Nanotube Electrodes,” The Journal of Physical Chemistry C, Vol. 113, No. 44, 2009, pp. 19082-19090. doi:10.1021/jp907160v
[13] M. S. Saha, R. Li, X. Sun and S. Ye, “3-D Composite Electrodes for High Performance PEM Fuel Cells Composed of Pt Supported on Nitrogen-Doped Carbon Nanotubes Grown on Carbon Paper,” Electrochemistry Communications, Vol. 11, No. 2, 2009, pp. 438-441. doi:10.1016/j.elecom.2008.12.013
[14] K. Gong, F. Du, Z. Xia, M. Durstock and L. Dai, “Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction,” Science, Vol. 323, No. 5915, 2009, pp. 760-764. doi:10.1126/science.1168049
[15] Y. Liu, Q. Fu and C. Pan, “Synthesis of Carbon Nanotubes on Pulse Plated Ni Nanocrystalline Substrate in Ethanol Flames,” Carbon, Vol. 43, No. 11, 2005, pp. 2264-2271. doi:10.1016/j.carbon.2005.04.005
[16] Q. Bao, J. Zhang, C. Pan, J. Li, C. M. Li, J. Zang and D. Y. Tang, “Recoverable Photoluminescence of Flame- Synthesized Multiwalled Carbon Nanotubes and Its Intensity Enhancement at 240 K,” The Journal of Physical Chemistry C, Vol. 111, No. 28, 2007, pp. 10347-10352. doi:10.1021/jp071460i
[17] G. Y. Zhang, X. C. Ma, D. Y. Zhong and E. G. Wang, “Polymerized Carbon Nitride Nanobells,” Journal of Applied Physics, Vol. 91, No. 11, 2002, pp. 9324-9332. doi:10.1063/1.1476070
[18] N. Hellgren, J. Guo, Y. Luo, C. S?the, A. Agui, S. Kashtanov, J. Nordgren and H. ?grenJ.-E. Sundgren, “Electronic Structure of Carbon Nitride Thin Films Studied by X-Ray Spectroscopy Techniques,” Thin Solid Films, Vol. 471, No. 1-2, 2005, pp. 19-34. doi:10.1016/j.tsf.2004.03.027
[19] O. Bj?rneholm, A. Nilsson, A. Sandell, B. Hernn?s and N. Mrtensson, “Determination of Time Scales for Charge- transfer Screening in Physisorbed Molecules,” Physical Review Letters, Vol. 68, No. 12, 1992, pp. 1892. doi:10.1103/PhysRevLett.68.1892
[20] S. Waidmann, M. Knupfer, J. Fink, B. Kleinsorge and J. Robertson, “Electronic Structure Studies of Undoped and Nitrogen-Doped Tetrahedral Amorphous Carbon Using High-Resolution Electron Energy-Loss Spectroscopy,” Journal of Applied Physics, Vol. 89, No. 7, 2001, pp. 3783-3792. doi:10.1063/1.1350999
[21] L. Liao, P. Fang and C. Pan, “Nitrogen-Doped Carbon Nanotubes from Amine Flames,” Journal of Nanoscience and Nanotechnology, Vol. 11, No. 2, 2011, pp. 1060- 1061. doi:10.1166/jnn.2011.3099
[22] P. Ayala, R. Arenal, M. Rümmeli, A. Rubio and T. Pichler, “The Doping of Carbon Nanotubes with Nitrogen and Their Potential Applications,” Carbon, Vol. 48, No. 3, pp. 575-586. doi:10.1016/j.carbon.2009.10.009
[23] J. Zhao, H. Park, J. Han and J. P. Lu, “Electronic Properties of Carbon Nanotubes with Covalent Sidewall Functionalization,” The Journal of Physical Chemistry B, Vol. 108, No. 14, 2004, pp. 4227-4230. doi:10.1021/jp036814u
[24] Y.-S. Min, E. J. Bae, U. J. Kim, E. H. Lee, N. Park, C. S. Hwang and W. Park, “Unusual Transport Characteristics of Nitrogen-Doped Single-Walled Carbon Nanotubes,” Applied Physics Letters, Vol. 93, No. 4, 2008, pp. 043113. doi:10.1063/1.2965805

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.