Trimetazidine and Cellular Response in Cardiopulmonary Bypass*

DOI: 10.4236/wjcs.2013.35035   PDF   HTML     3,682 Downloads   4,967 Views   Citations


Background: Organic cellular inflammatory response constitutes a pathophysiological mechanism present in all Coronary Artery Bypass Graftings (CABGs). In this aspect, the organism brings forth its defenses through answers that involve cellular components. Objectives: To evaluate, in a randomized double-blind prospective study, controlled with placebo, the effects of trimetazidine (Tmz) on cellular response, analyzed through the variation of leukocytes, neutrophils and monocytes. Patients and Method: 30 patients were randomly selected to be studied, with no more than a mild ventricular dysfunction, and divided into two groups (Tmz and placebo) stratified by echocardiography and receiving medication/placebo in a 60 mg/day dose. The samples of leukocytes, neutrophils and monocytes were obtained in the pre-operatory day without medication, at surgery day with 12 to 15 days of medication/placebo, with 5 minutes after the aortic declamping, and within 12, 24 and 48 hours after surgery. Results: The leukocytes and neutrophils levels have decreased significantly in the treated group when compared to the control group, in all analyzed moments (p = 0.012; p = 0.005). Conclusions and Clinical Implications: Trimetazidine has proved to reduce significantly the levels of total leukocytes and neutrophils in patients submitted to CABG.

Share and Cite:

G. Martins, A. G. de Siqueira Filho, J. Bosco de F. Santos, C. Roberto Cavalcanti Assunção, A. Valência and G. Martins, "Trimetazidine and Cellular Response in Cardiopulmonary Bypass*," World Journal of Cardiovascular Surgery, Vol. 3 No. 5, 2013, pp. 171-179. doi: 10.4236/wjcs.2013.35035.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. Larmann and G. Theilmeier, “Inflammatory Response to Cardiac Surgery: Cardiopulmonary Bypass versus Non-Cardiopulmonary Bypass Surgery,” Best Practice & Research Clinical Anaesthesiology, Vol. 18, No. 3, 2004, pp. 425-438. doi:10.1016/j.bpa.2003.12.004
[2] S. Wan, J. L. LeClerc and J. L. Vincent, “Inflammatory Response to Cardiopulmonary Bypass Mechanisms Involved and Possible Therapeutic Strategies,” Chest, Vol. 112, No. 3, 1997, pp. 676-692. doi:10.1378/chest.112.3.676
[3] A. L. S. Brasileiro, “A injúria de Reperfusao Miocárdica,” A Revista da SOCERJ, Vol. 10, No. 2, 1997, pp. 79-88.
[4] L. H. Edmunds, “Inflammatory Response to Cardiopulmonary Bypass,” The Annals of Thoracic Surgery, Vol. 66, No. 5, 1998, pp. S12-S16. doi:10.1016/S0003-4975(98)00967-9
[5] J. R. S. Day and K. M. Taylor, “The Systemic Inflammatory Response Syndrome and Cardiopulmonary Bypass,” International Journal of Surgery, Vol. 3, No. 2, 2005, pp. 129-140. doi:10.1016/j.ijsu.2005.04.002
[6] P. E. Greilich, C. F. Brouse, H. M. Rinder, et al., “Monocyte Activation in On-Pump versus Off-Pump Coronary Artery Bypass Surgery,” Journal of Cardiothoracic and Vascular Anesthesia, Vol. 22, No. 3, 2008, pp. 361-368. doi:10.1053/j.jvca.2007.08.009
[7] M. Nijziel, R. V. Oerle, C. Van’tVeer, et al., “Tissue Factor Activity in Human Monocytes Is Regulated by Plasma: Implications for the High and Low Responder Phenomenon,” British Journal of Haematology, Vol. 112, No. 1, 2001, pp. 98-104. doi:10.1046/j.1365-2141.2001.02545.x
[8] N. Maugeri, M. Brambilla, M. Camera, et al., “Human Polymorphonuclear Leukocytes Produce and Express Functional Tissue Factor upon Stimulation,” Journal of Thrombosis and Haemostasis, Vol. 4, No. 6, 2006, pp. 1323-1330. doi:10.1111/j.1538-7836.2006.01968.x
[9] T. Pintar and C. D. Collard, “The Systemic Inflammatory Response to Cardiopulmonary Bypass,” Anesthesiology Clinics of North America, Vol. 21, No. 3, 2003, pp. 453-464. doi:10.1016/S0889-8537(03)00039-7
[10] T. Kawamura, R. Wakusawa, K. Okada, et al., “Elevation of Cytokines during Open Heart Surgery with Cardiopulmonary Bypass: Participation of Interleukin 8 and 6 in Reperfusion Injury,” Canadian Journal of Anesthesia, Vol. 40, No. 11, 1993, pp. 1016-1021. doi:10.1007/BF03009470
[11] G. F. Martins, A. G. Siqueira-Filho, J. B. F. Santos, et al., “Trimetazidina na Injuria de Isquemia e Reperfusao em Cirurgia de Revascularizacao do Miocárdio,” Arquivos Brasileiros de Cardiologia, Vol. 97, No. 3, 2011, pp. 209-216. doi:10.1590/S0066-782X2011005000079
[12] A. L. Moens, M. Claeys, J. Timmermans, et al., “Myocardial Ischemia/Reperfusion—Injury a Clinical View on a Complex Pathophysiological Process,” International Journal of Cardiology, Vol. 100, No. 2, 2004, pp. 179-190. doi:10.1016/j.ijcard.2004.04.013
[13] J. G. Laffey, J. F. Boylan and D. C. H. Cheng, “The Systemic Inflammatory Response to Cardiac Surgery,” Anesthesiology, Vol. 97, No. 1, 2002, pp. 215-252. doi:10.1097/00000542-200207000-00030
[14] G. L. J. Vermeiren, M. J. Claeys, D. V. Bockstaele, et al., “Reperfusion Injury after Focal Myocardial Ischemia: Polymorphonuclear Leukocyte Activation and Its Clinical Implications,” Ressuscitation, Vol. 45, No. 1, 2000, pp. 35-61. doi:10.1016/S0300-9572(00)00168-4
[15] C. D. Collard and S. Gelman, “Pathophysiology, Clinical Manifestations, and Prevention of Ischemia-Reperfusion Injury,” Anesthesiology, Vol. 94, No. 6, 2001, pp. 1133-1138. doi:10.1097/00000542-200106000-00030
[16] H. Kin, Z. Q. Zhao, H. Y. Sun, et al., “Post Conditioning Attenuates Myocardial Ischemia-Reperfusion Injury by Inhibiting Events in the Early Minutes of Reperfusion,” Cardiovascular Research, Vol. 62, No. 1, 2004, pp. 74-75. doi:10.1016/j.cardiores.2004.01.006
[17] O. J. Warren, A. J. Smith, C. Alexiou, et al., “The Inflammatory Response to Cardiopulmonary Bypass: Part 1—Mechanisms of Pathogenesis,” Journal of Cardiothoracic and Vascular Anesthesia, Vol. 23, No. 2, 2009, pp. 223-231. doi:10.1053/j.jvca.2008.08.007
[18] D. M. Cerqueira, J. N. Weissman and V. Dilsizian, “Standardized Myocardial Segmentation and Nomenclature for Tomographic Imaging of the Heart,” Circulation, Vol. 105, No. 4, 2002, pp. 539-542. doi:10.1161/hc0402.102975
[19] A. Diegeler, N. Doll, T. Rauch, et al., “Humoral Immune Response during Coronary Artery Bypass Grafting,” Circulation, Vol. 102, No. 19, 2000, pp. III95-III100. doi:10.1161/01.CIR.102.suppl_3.III-95
[20] C. V. Serrano Jr., J. A. Souza, N. H. Lopes, et al., “Reduced Expression of Systemic Proinflammatory and Myocardial Biomarkers after Off-Pump versus On-Pump Coronary Artery Bypass Surgery: A Prospective Randomized Study,” Journal of Critical Care, Vol. 25, No. 2, 2010, pp. 305-312. doi:10.1016/j.jcrc.2009.06.009
[21] A. A. Albert, C. J. Beller, J. A. Walter, et al., “Preoperative High Leukocyte Count: A Novel Risk Factor for Stroke after Cardiac Surgery,” The Annals of Thoracic Surgery, Vol. 75, No. 5, 2003, pp. 1550-1557. doi:10.1016/S0003-4975(02)04376-X
[22] M. L. Fontes, D. Amar, A. Kulak, et al., “Increased Preoperative White Blood Cell Count Predicts Postoperative Atrial Fibrillation after Coronary Artery Bypass Surgery,” Journal of Cardiothoracic and Vascular Anesthesia, Vol. 23, No. 4, 2009, pp. 484-487. doi:10.1053/j.jvca.2009.01.030
[23] C. W. Whitten, G. E. Hill, R. Ivy, et al., “Does the Duration of Cardiopulmonary Bypass or Aortic Cross-Clamp, in the Absence of Blood and/or Blood Product Administration, Influence the IL-6 Response to Cardiac Surgery,” Anesthesia & Analgesia, Vol. 86, No. 1, 1998, pp. 28-33.
[24] J. McGuinness, D. Bouchier-Hayes and J. M. Redmond, “Understanding the Inflammatory Response to Cardiac Surgery,” Surgeon, Vol. 6, No. 3, 2008, pp. 162-171. doi:10.1016/S1479-666X(08)80113-8
[25] J. R. S. Day and K. M. Taylor, “The Systemic Inflammatory Response Syndrome and Cardiopulmonary Bypass,” International Journal of Surgery, Vol. 3, No. 2, 2005, pp. 129-140. doi:10.1016/j.ijsu.2005.04.002
[26] J. E. Jordan, Z. Q. Zhao and V. J. Johansen, “The Role of Neutrophils in Myocardial Ischemia-Reperfusion Injury,” Cardiovascular Ressearch, Vol. 43, No. 4, 1999, pp. 860-878. doi:10.1016/S0008-6363(99)00187-X
[27] J. Bucerius, J. F. Gummert, M. A. Borger, et al., “Stroke after Cardiac Surgery: A Risk Factor Analysis of 16,184 Consecutive Adult Patients,” The Annals of Thoracic Surgery, Vol. 75, No. 2, 2003, pp. 472-478. doi:10.1016/S0003-4975(02)04370-9
[28] J. Nissinen, F. Biancari, J. Wistbacka, et al., “Safe Time Limits of Aortic Cross-Clamping and Cardiopulmonary Bypass in Adult Cardiac Surgery,” Perfusion, Vol. 24, No. 5, 2009, pp. 297-305. doi:10.1177/0267659109354656
[29] J. Utoh, T. Yamamoto, T. Kambara, et al., “Complement Conversion and Leukocyte Kinetics in Open Heart Surgery,” The Japanese Journal of Surgery, Vol. 18, No. 3, 1988, pp. 259-267. doi:10.1007/BF02471442
[30] G. Lamm, J. Auer and J. Weber, “Postoperative White Blood Cell Count Predicts Atrial Fibrillation after Cardiac Surgery,” Journal of Cardiothoracic and Vascular Anesthesia, Vol. 20, No. 1, 2006, pp. 51-56. doi:10.1053/j.jvca.2005.03.026
[31] M. H. L. Souza and D. O. Elias, “Resposta Inflamatória Sistêmica à Circula??o Extracorpórea,” Anaesthesiology, 1999, Vol. 90, No. 1, pp. 72-80.
[32] J. F. M. Pruijt, P. Verzaal, R. Van Os, et al., “Neutrophils Are Indispensable for Hematopoietic Stem Cell Mobilization Induced by Interleukin-8 in Mice,” Proceedings of the National Academy of the Sciences of the United States of America, Vol. 99, No. 9, 2002, pp. 6228-6233. doi:10.1073/pnas.092112999
[33] I. U. Schraufstatter, R. G. DiScipio, M. Zhao, et al., “C3a and C5a Are Chemotactic Factors for Human Mesenchymal Stem Cells, Which Cause Prolonged ERK1/2 Phosphorylation,” The Journal of Immunology, Vol. 182, No. 6, 2009, pp. 3827-3836. doi:10.4049/jimmunol.0803055
[34] F. M. Williams, K. Tanda, M. Kus, et al., “Trimetazidine Inhibits Neutrophil Accumulation after Myocardial Ischemia and Reperfusion in Rabbits,” Journal of Cardiovascular Pharmacology, Vol. 22, No. 6, 1993, pp. 828-833. doi:10.1097/00005344-199312000-00008
[35] G. F. Martins, A. G. Siqueira-Filho, J. B. F. Santos, et al., “Trimetazidine and Inflammatory Response in Coronary Artery Bypass Grafting,” Arquivos Brasileiros de Cardiologia, Vol. 99, No. 2, 2012, pp. 688-696. doi:10.1590/S0066-782X2012005000066
[36] L. D. Monti, S. Allibardi, P. M. Piatti, et al., “Triglycerides Impair Postischemic Recovery in Isolated Hearts: Roles of Endothelin-1 and Trimetazidine,” The American Journal of Physiology—Heart and Circulatory Physiology, Vol. 281, No. 3, 2001, pp. H1122-H1130.
[37] I. Tritto, P. Wang, P. Kuppusamy, et al., “The Anti-Anginal Drug Trimetazidine Reduces Neutrophil-Mediated Cardiac Reperfusion Injury,” Journal of Cardiovascular Pharmacology, Vol. 46, No. 1, 2005, pp. 89-98. doi:10.1097/01.fjc.0000164091.81198.a3
[38] B. M. Matata, A. W. Sosnowski and M. Galinanes, “Off-Pump Bypass Graft Operation Significantly Reduces Oxidative Stress and Inflammation,” The Annals of Thoracic Surgery, Vol. 69, No. 3, 2000, pp. 785-791. doi:10.1016/S0003-4975(99)01420-4
[39] K. A. Kaminski, T. A. Bonda, J. Korecki, et al., “Oxidative Stress and Neutrophil Activation—The Two Keystones of Ischemia/Reperfusion Injury,” International Journal of Cardiology, Vol. 86, No. 1, 2002, pp. 41-59. doi:10.1016/S0167-5273(02)00189-4
[40] P. Di Napoli, P. Di Giovanni, M. A. Gaeta, et al., “Trimetazidine and Reduction in Mortality and Hospitalization in Patients with Ischemic Dilated Cardiomyopathy: A Post Hoc Analysis of the Villa Pini D’Abruzzo Trimetazidina Trial,” Journal of Cardiovascular Pharmacology, Vol. 50, No. 5, 2007, pp. 585-589. doi:10.1097/FJC.0b013e31814fa9cb

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.