Simultaneous Hydrogen Production with the Degradation of Naphthalene in Seawater Using Solar Light-Responsive Carbon-Modified (CM)-n-TiO2 Photocatalyst

DOI: 10.4236/mrc.2013.23A002   PDF   HTML     4,222 Downloads   9,485 Views   Citations

Abstract

The simultaneous photocatalytic production of hydrogen and degradation of naphthalene in seawater was successfully achieved using carbon modified titanium oxide (CM-n-TiO2) nanoparticles under natural sunlight illumination. Compared to unmodified titanium oxide (n-TiO2), CM-n-TiO2 nanoparticles exhibited significantly higher photocatalytic efficiency. It is considered that carbon modification is responsible for the significant enhancement in the observed photoactivity. The experimental results indicated that the simultaneous production of hydrogen and degradation of naphthalene was favorable at pH 8 and optimal catalyst dose of 1.0 g.L-1. The solar photocatalytic degradation of naphthalene in seawater using CM-n-TiO2 successfully fitted using Langmuir-Hinshelwood model, and can be described by pseudo-first order kinetic model.

Share and Cite:

Y. Shaban, "Simultaneous Hydrogen Production with the Degradation of Naphthalene in Seawater Using Solar Light-Responsive Carbon-Modified (CM)-n-TiO2 Photocatalyst," Modern Research in Catalysis, Vol. 2 No. 3A, 2013, pp. 6-12. doi: 10.4236/mrc.2013.23A002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, Vol. 238, No. 5358, 1972, pp. 37-38.
[2] S. U. M. Khan and J. Akikusa, “Photoelectrochemical Splitting of Water at Nanocrystalline n-Fe2O3 Thin-Film Electrodes,” The Journal of Physical Chemistry B, Vol. 103, No. 34, 1999, pp. 7184-7189. doi:10.1021/jp990066k
[3] S. U. M. Khan, M. Al-Shahry and W. B. Ingler Jr., “Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2,” Science, Vol. 297, No. 5590, 2002, pp. 2243-2245. doi:10.1126/science.1075035
[4] S. K. Mohaputra, M. Mishra and V. K. Mahajan, “Design of a Highly Efficient Photoelectrolytic Cell for Hydrogen Generation by Water Splitting: Application of TiO2-xCx Nanotubes as a Photoanode and Pt/TiO2 Nanotubes as a Cathode,” The Journal of Physical Chemistry C, Vol. 111, No. 24, 2007, pp. 8677-8685. doi:10.1021/jp071906v
[5] C. Xu, Y. A. Shaban, W. B. Ingler Jr. and S. U. M. Khan, “Nanotube Enhanced Photoresponse of Carbon Modified (CM)-n-TiO2 for Efficient Water Splitting,” Solar Energy Materials Solar Cells, Vol. 91, No. 10, 2007, pp. 938-943. doi:10.1016/j.solmat.2007.02.010
[6] Y. A. Shaban and S. U. M. Khan, “Visible Light Active Carbon Modified n-TiO2 for Efficient Hydrogen Production by Photoelectrochemical Splitting of Water,” International Journal of Hydrogen Energy, Vol. 33, No. 4, 2008, pp. 1118-1126. doi:10.1016/j.ijhydene.2007.11.026
[7] Y. A. Shaban and S. U. M. Khan, “Carbon Modified (CM)n-TiO2 Thin Films for Efficient Water Splitting to H2 and O2 under Xenon Lamp Light and Natural Sunlight Illuminations,” Journal of Solid State Electrochemistry, Vol. 13, No. 7, 2009, pp. 1025-1036.
[8] Y. A. Shaban and S. U. M. Khan, “Efficient Photoelectrochemical Splitting of Water to H2 and O2 at Nanocrystalline Carbon Modified (CM)-n-TiO2 and (CM)-n-Fe2O3 Thin Films,” International Journal of Nanotechnology, Vol. 7, No. 1, 2010, pp. 69-98. doi:10.1504/IJNT.2010.029549
[9] D. W. Chen and A. K. Ray, “Photocatalytic Kinetics of Phenol and Its Derivatives over UV Irradiated TiO2,” Applied Catalysis B: Environmental, Vol. 23, No. 2-3, 1999, pp. 143-157. doi:10.1016/S0926-3373(99)00068-5
[10] C. Burda, Y. Lou, X. Chen, A. C. S. Samia, J. Stout and J. L. Gole, “Enhanced Nitrogen Doping in TiO2 Nanoparticles,” Nano Letters, Vol. 3, No. 8, 2003, pp. 1049-1051. doi:10.1021/nl034332o
[11] T. Oppenlander, “Photochemical Purification of Water and Air,” Wiley-VCH, Weinheim, 2003.
[12] A. A. C. Magalhaes, D. L. Nunes, P. A. Robles-Dutenhefner and E. M. B. De Sousa, “Catalytic Activity of Porous TiO2 Obtained by Sol-Gel Process in the Degradation of Phenol,” Journal of Non-Crystalline Solids, Vol. 348, No. 12, 2004, pp. 185-189.
[13] S. Parsons, “Advanced Oxidation Processes for Water and Wastewater Treatment,” IWA Publishing, Cornwall, 2004.
[14] R. M. Mohamed, A. A. Ismail, I. Othman and I. A. Ibrahim, “Preparation of TiO2-ZSM-5 zeolite for Photodegradation of EDTA,” Journal of Molecular Catalysis A: Chemical, Vol. 238, No. 1-2, 2005, pp. 151-157. doi:10.1016/j.molcata.2005.05.023
[15] K. Demeestere, J. Dewulf, T. Ohno, P. H. Salgado and H. Van Langenhove, “Visible Light Mediated Photocatalytic Degradation of Gaseous Trichloroethylene and Dimethyl Sulfide on Modified Titanium Dioxide,” Applied Catalysis B: Environmental, Vol. 61, No. 1-2, 2005, pp. 140-149. doi:10.1016/j.apcatb.2005.04.017
[16] H. Park and W. Choi, “Photocatalytic Reactivities of Nafion-Coated TiO2 for the Degradation of Charged Organic Compounds under UV or Visible Light,” The Journal of Physical Chemistry B, Vol. 109, No. 23, 2005, pp. 11667-11674. doi:10.1021/jp051222s
[17] C. Xu, R. Killmeyer, M. L. Gray and S. U. M. Khan, “Photocatalytic Effect of Carbon-Modified n-TiO2 Nanoparticles under Visible Light Illumination,” Applied Catalysis B: Environmental, Vol. 64, No. 3-4, 2006, pp. 312-317. doi:10.1016/j.apcatb.2005.11.008
[18] Y. A. Shaban, M. A. El Sayed, A. A. El Maradny, R. Kh. Al Farawati and M. I. Al Zobidi, “Photocatalytic Degradation of Phenol In Natural Seawater Using Visible Light Active Carbon Modified (CM)-n-TiO2 Nanoparticles under UV Light and Natural Sunlight Illuminations,” Chemosphere, Vol. 91, No. 3, 2013, pp. 307-313. doi:10.1016/j.chemosphere.2012.11.035
[19] W. Choi, A. Termin and M. R. Hoffman, “The Role of Metal Ion Dopants in Quantum Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics,” Journal of Physical Chemistry, Vol. 98, No. 51, 1994, pp. 13669-13679. doi:10.1021/j100102a038
[20] M. Anpo, “Photocatalysis on Titanium Oxide Catalysts: Approaches in Achieving Highly Efficient Reactions and Realizing the Use of Visible Light,” Catalysis Surveys from Japan, Vol. 1, No. 2, 1997, pp. 169-179. doi:10.1023/A:1019024913274
[21] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, “Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides,” Science, Vol. 293, No. 5528, 2001, pp. 269-271. doi:10.1126/science.1061051
[22] Y. C. Hong, C. U. Bang, D. H. Shin and H. S. Uhm, “Band Gap Narrowing of TiO2 by Nitrogen Doping in Atmospheric Microwave Plasma,” Chemical Physics Letters, Vol. 413, No. 4-6, 2005, pp. 454-457. doi:10.1016/j.cplett.2005.08.027
[23] T. Umebayashi, T. Yamaki, H. Itoh and K. Asai, “Band Gap Narrowing of Titanium Dioxide by Sulfur Doping,” Applied Physics Letters, Vol. 81, No. 3, 2002, pp. 454-456. doi:10.1063/1.1493647
[24] M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, “Environmental Applications of Semiconductor Photocatalysis,” Chemical Reviews, Vol. 95, No. 1, 1995, pp. 69-96. doi:10.1021/cr00033a004
[25] C. S. Turchi and D. F. Ollis, “Photocatalytic Degradation of Organic Water Contamination: Mechanisms Involving Hydroxyl Radical Attack,” Journal of Catalysis, Vol. 122, No. 1, 1990, pp. 178-192. doi:10.1016/0021-9517(90)90269-P
[26] J. R. Bolton, “Solar Photoproduction of Hydrogen: A Review,” Solar Energy, Vol. 57, No. 1, 1996, pp. 37-50. doi:10.1016/0038-092X(96)00032-1
[27] Y. Li, G. Lu and S. Li, “Photocatalytic Hydrogen Generation and Decomposition of Oxalic Acid over Platinized TiO2,” Applied Catalysis A: General, Vol. 214, No. 2, 2001, pp. 179-185. doi:10.1016/S0926-860X(01)00491-4
[28] C. W. King and M. E. Webber, “The Water Intensity of the Plugged-In Automotive Economy,” Environmental Science and Technology, Vol. 42, No. 12, 2008, pp. 4305-4311.
[29] M. C. Lu, G. D. Roam, J. N. Chen and C. P. Huang, “Factors Affecting the Photocatalytic Degradation of Dichlorovos over Titanium Dioxide Supported on Glass,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 76, No. 1-2, 1993, pp. 103-109. doi:10.1016/1010-6030(93)80180-H
[30] W. Z. Tang and C. P. Huang, “Photocatalyzed Oxidation Pathways of 2,4-Dichlorophenol by CdS in Basic and Acidic Aqueous Solutions,” Water Research, Vol. 29, No. 2, 1995, pp. 745-756. doi:10.1016/0043-1354(94)00151-V
[31] M. Bekbolet and I. Balcioglu, “Photocatalytic Degradation Kinetics of Humic Acid in Aqueous TiO2 Dispersions: The Influence of Hydrogen Peroxide and Bicarbonate Ion,” Water Science and Technology, Vol. 34, No. 9, 1996, pp. 73-80. doi:10.1016/S0273-1223(96)00789-5
[32] F. Akbal and A. N. Onar, “Photocatalytic Degradation of Phenol,” Environmental Monitoring and Assessment, Vol. 83, No. 3, 2003, pp. 295-302. doi:10.1023/A:1022666322436
[33] R. Wang, D. Ren, S. Xia, Y. Zhang and J. Zhao, “Photocatalytic Degradation of Bisphenol A (BPA) Using Immobilized TiO2 and UV Illumination in a Horizontal Circulating Bed Photocatalytic Reactor (HCBPR),” Journal of Hazardous Materials, Vol. 169, No. 1-3, 2009, pp. 926-932. doi:10.1016/j.jhazmat.2009.04.036
[34] M. L. Chin, A. R. Mohamed and S. Bhatia, “Performance of Photocatalytic Reactors Using Immobilized TiO2 Film for the Degradation of Phenol and Methylene Blue Dye Present in Water Stream,” Chemosphere, Vol. 57, No. 7, 2004, pp. 547-554. doi:10.1016/j.chemosphere.2004.07.011
[35] S. Merabet, A. Bouzaza and D. Wolbert, “Photocatalytic Degradation of Indole in a Circulating Upflow Reactor by UV/TiO2 Process—Influence of Some Operating Parameters,” Journal of Hazardous Materials, Vol. 166, No. 2-3, 2009, pp. 1244-1249. doi:10.1016/j.jhazmat.2008.12.047
[36] R. Jain and M. Shrivastava, “Photocatalytic Removal of Hazardous Dye Cyanosine from Industrial Waste Using Titanium Dioxide,” Journal of Hazardous Materials, Vol. 152, No. 1, 2008, pp. 216-220. doi:10.1016/j.jhazmat.2007.06.119
[37] S. Ahmed, M. G. Rasul, W. N. Martens, R. Brown and M. A. Hashib, “Heterogeneous Photocatalytic Degradation of Phenols in Wastewater: A Review on Current Status and Developments,” Desalination, Vol. 261, No. 1-2, 2010, pp. 3-18. doi:10.1016/j.desal.2010.04.062
[38] A. V. Petukhov, “Effect of Molecular Mobility on Kinetics of an Electrochemical Langmuir-Hinshelwood Reaction,” Chemical Physics Letters, Vol. 277, No. 5, 1997, pp. 539-544. doi:10.1016/S0009-2614(97)00916-0
[39] K. H. Wang, Y. H. Hsieh and L. J. Chen, “The Heterogeneous Photocatalytic Degradation, Intermediates and Mineralization for the Aqueous Solution of Cresols and Nitrophenols,” Journal of Hazardous Materials, Vol. 59, No. 2-3, 1998, pp. 251-260. doi:10.1016/S0304-3894(97)00151-9
[40] B. Bayarri, J. Gimenez, D. Curco and S. Esplugas, “Photocatalytic Degradation of 2,4-Dichlorophenol by TiO2/ UV: Kinetics, Actinometries and Models,” Catalysis Today, Vol. 101, No. 3-4, 2005, pp. 227-236. doi:10.1016/j.cattod.2005.03.019
[41] E. Kusvuran, A. Samil, O. M. Atanur and O. Erbatur, “Photocatalytic Degradation Kinetics of diand Tri-Substituted Phenolic Compound in Aqueous Solution by TiO2/ UV,” Applied Catalysis B: Environmental, Vol. 58, No. 3-4, 2005, pp. 211-216. doi:10.1016/j.apcatb.2004.11.023

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.