Changes in Regional Potential Vegetation in Response to an Ambitious Mitigation Scenario


Climate change impacts on the potential vegetation (biomes) are compared for an ambitious emissions-reduction scenario (E1) and a medium-high emissions scenario with no mitigation policy (A1B). The E1 scenario aims at limiting global mean warming to 2°C or less above pre-industrial temperatures and is closely related to the RCP2.6 sued in the CMIP5. A multi-model ensemble of ten state-of-the-art coupled atmosphere-ocean general circulation models (GCMs) is analyzed. A simple biome model is used to assess the response of potential vegetation to the different forcing in the two scenarios. Changes in biomes in response to the simulated climate change are less pronounced in E1 than in the A1B scenario. Most biomes shift polewards, with biomes adapted to colder climates being replaced by biomes adapted to warmer climates. In some regions cold biomes (e.g. Tundra, Taiga) nearly disappear in the A1B scenario but are also significantly reduced under the E1 scenario.

Share and Cite:

H. Huebener and J. Körper, "Changes in Regional Potential Vegetation in Response to an Ambitious Mitigation Scenario," Journal of Environmental Protection, Vol. 4 No. 8B, 2013, pp. 16-26. doi: 10.4236/jep.2013.48A2003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] R. H. Moss, et al., “The Next Generation of Scenarios for Climate Change Research and Assessment,” Nature, Vol. 463, 2010, pp. 747-756. doi:10.1038/nature08823
[2] P. van der Linden and J. F. B. Mitchell, “ENSEMBLES: Climate Change and Its Impacts: Summary of Research and Results from the ENSEMBLES Project,” Met Office Hadley Centre, 2009, 160 p.
[3] J. A. Lowe, C. D. Hewitt, D. P. van Vuuren, T. C. Johns, E. Stehfest, J.-F. Royer and P. J. van der Linden, “New Study for Climate Modeling, Analyses, and Scenarios,” Eos, Transactions American Geophysical Union, Vol. 90, No. 21, 2009, pp. 181-182. doi:10.1029/2009EO210001
[4] T. C. Johns, J.-F. Royer, I. Hoschel, H. Huebener, E. Roeckner, E., Manzini, W. May, J.-L. Dufresne, O. H. Ottera, D. P. van Vuuren, D. Salas y Melia, M. Giorgetta, S. Denvil, S. Yang, P. G. Fogli, J. Korper and C. D. Hewitt, “Climate Change under Aggressive Mitigation: The ENSEMBLES Multi-Model Experiment,” Climate Dynamics, Vol. 37, No. 9-10, 2011, pp. 1975-2003. doi:10.1007/s00382-011-1005-5
[5] D. G. Streets, et al., “Two-Decadal Aerosol Trends as a Likely Explanation of the Global Dimming/Brightening Transition,” Geophysical Research Letters, Vol. 33, No. 15, 2006, p. L15806. doi:10.1029/2006GL026471
[6] M. I. Mischchenko, et al., “Long-Term Satellite Record Reveals Likely Recent Aerosol Trend,” Science, Vol. 315, No. 5851, 2007, p. 1543. doi:10.1126/science.1136709
[7] G. A. Meehl, T. F. Stocker, et al., “Global Climate Projections,” In: S. Solomon, et al., Eds., Climate Change 2007: The Physical Science Basis, Cambridge University Press, Cambridge, New York, 2007, pp. 747-846.
[8] H. Huebener, M. G. Sanderson, I. Hoschel, J. Korper, T. C. Johns, J.-F. Royer, E. Roeckner, E. Manzini, J.-L. Dufresne, O. H. Ottera, J. Tjiputra, D. S. Y Melia, M. Giorgetta, S. Denvil and P. G. Fogli, “Regional Hydrological Cycle Changes in Response to an Ambitious Mitigation Scenario,” Climatic Change, 2013. doi:10.1007/s10584-013-0829-x
[9] J. Korper, I. Hoschel, J. A. Lowe, C. D. Hewitt, D. Salas y Melia, E. Roeckner, H. Huebener, J.-F. Royer, J.-L. Dufresne, A. Pardaens, M. A. Giorgetta, M. G. Sanderson, O. H. Ottera, J. Tjiputra and S. Denvil, “The Effects of Aggressive Mitigation on Steric Sea Level Rise and Sea Ice Changes,” Climate Dynamics, Vol. 40, No. 3-4, 2013, pp. 531-550. doi:10.1007/s00382-012-1612-9
[10] A. Fischlin, G. F. Midgley, J. T. Price, R. Leemans, B. Gopal, C. Turley, M. D. A. Rounsevell, O. P. Dube, J. Tarazona and A. A. Velichko, “Ecosystems, Their Properties, Goods, and Services,” In: M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden and C. E. Hanson, Eds., Climate Change 2007: Impacts, Adaptation and Vulnerability, Cambridge University Press, Cambridge, 2007, pp. 211-272.
[11] O. E. Sala, F. S. Chapin, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzig, R. Leemans, D. M. Lodge, H. A. Mooney, M. Oesterheld, A. L. Poff, M. T. Sykes, B. H. Walker, M. Walker and D. H. Wall, “Global Biodiversity Scenarios for the Year 2100,” Science, Vol. 287, No. 5459, 2000, pp. 1770-1774.
[12] A. D. Hansen, R. P. Neilson, V. H. Dale, C. H. Flather, L. R. Iverson, D. J. Currie, S. Shaver, R. Cook and P. J. Bartlein, “Global Change in Forests: Responses of Species, Communities and Biomes,” BioScience, Vol. 51, No. 9, 2001, pp. 765-779. doi:10.1641/0006-3568(2001)051[0765:GCIFRO]2.0.CO;2
[13] S. Sitch, C. Huntingford, N. Gedney, P. E. Levy, M. Lomas, S. L. Piao, R. Betts, P. Ciais, P. Cox, P. Friedlingstein, C. D. Jones, I. C. Prentice and F. I. Woodward, “Evaluation of the Terrestrial Carbon Cycle, Future Plant Geography and Climate-Carbon Cycle Feedbacks Using Five Dynamic Global Vegetation Models (DGVMs),” Global Change Biology, Vol. 14, No. 9, 2008, pp. 2015-2039. doi:10.1111/j.1365-2486.2008.01626.x
[14] M. Kirschbaum and A. Fischlin, “Climate Change Impacts on Forests,” In: R. Watson, M. C. Zinyowera and R. H. Moss, Eds., Climate Change 1995: Impacts; Adaptations and Mitigation of Climate Change. Scientific-Technical Analysis, Cambridge University Press, Cambridge, 1996, pp. 95-129.
[15] I. C. Prentice, W. Cramer, S. P. Harrison, R. Leemans, R. A. Monserud and M. A. Solomon, “A Global Biome Model Based on Plant Physiology and Dominance, Soil Properties and Climate” Journal of Biogeography, Vol. 19, No. 2, 1992, pp. 117-134. doi:10.2307/2845499
[16] W. May, “Climatic Changes Associated with a Global ‘2°C-Stabilization’ Scenario Simulated by the ECHAM5/ MPI-OM Coupled Climate Model,” Climate Dynamics, Vol. 31, No. 2-3, 2008, pp. 283-313. doi:10.1007/s00382-007-0352-8
[17] J. H. Christensen, B. Hewitson, et al., “Regional Climate Projections,” In: S. Solomon, et al., Eds., Climate Change 2007: The Physical Science Basis, Cambridge University Press, Cambridge, New York, 2007, Chapter 11.
[18] F. Giorgi and X. Bi, “Updated Regional Precipitation and Temperature Changes for the 21st Century from Ensembles of Recent AOGCM Simulations,” Geophysical Research Letters, Vol. 32, No. 21, 2005, p. L21715. doi:10.1029/2005GL024288
[19] J. O. Kaplan, et al., “Climate Change and Arctic Ecosystems: 2. Modeling, Paleodata-Model Comparisons, and Future Projections,” Journal of Geophysical Research: Atmospheres, Vol. 108, No. D19, 2003, p. 8171. doi:10.1029/2002JD002559
[20] T. D. Mitchell and P. D. Jones, “An Improved Method of Constructing a Database of Monthly Climate Observations and Associated High-Resolution Grids,” Journal of Geophysical Research: Atmospheres, Vol. 25, No. 6, 2005, pp. 693-712. doi:10.1002/joc.1181
[21] G. J. Huffman, R. F. Adler, M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock and J. Susskind, “Global Precipitation at One-Degree Daily Resolution from Multi-Satellite Observations,” Journal of Hydrometeorology, Vol. 2, No. 1, 2001, pp. 36-50. doi:10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2
[22] M. de Castro, C. Gallardo, K. Jylha and K. Tuomenvirta, “The Use of a Climate-Type Classification for Assessing Climate Change Effects in Europe from Ensemble of Nine Regional Climate Models,” Climatic Change, Vol. 81, No. 1, 2007, pp. 329-342. doi:10.1007/s10584-006-9224-1
[23] F. Hanf, J. Korper, T. Spangehl and U. Cubasch, “Shifts of Climate Zones in Multi-Model Climate Change Experiments Using the Koppen Climate Classification,” Meteorologische Zeitschrift, Vol. 21, No. 2, 2012, pp. 111-123. doi:10.1127/0941-2948/2012/0344
[24] R. A. Monserud and R. Leemans, “Comparing Global Vegetation Maps with the Kappa Statistic,” Ecological Modelling, Vol. 62, No. 4, 1992, pp. 275-293. doi:10.1016/0304-3800(92)90003-W
[25] C. A. Alo and G. Wang, “Potential Future Changes of the Terrestrial Ecosystem Based on Climate Projections by Eight General Circulation Models,” Journal of Geophysical Research, Vol. 113, No. G1, 2008, p. G01004. doi:10.1029/2007JG000528
[26] Y. Malhi, et al., “Exploring the Likelihood and Mechanism of a Climate-Change Induced Dieback of the Amazon Rainforest,” Proceedings of the National Academy of Sciences, Vol. 106, No. 49, 2009, pp. 20610-20615. doi:10.1073/pnas.0804619106

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.