Share This Article:

Stratified Cox Regression Analysis of Survival under CIMAvax®EGF Vaccine

Full-Text HTML Download Download as PDF (Size:441KB) PP. 8-14
DOI: 10.4236/jct.2013.48A002    4,426 Downloads   6,350 Views   Citations


Background: The Center of Molecular Immunology (CIM) is a center in Cuba devoted to the research, development and manufacturing of biotechnological products. CIMAvax?EGF is a vaccine for the treatment of non-small cell lung cancer patients (NSCL). Purpose: The aim of this work is to evaluate the effects of some potential prognostic factors on the overall survival of patients treated with CIMAvax?EGF vaccine, based on data collected in a phase II and a phase III clinical trials. Methods: The stratified Cox regression model is used to evaluate the effects of these prognostic factors, based on separate analysis for each trial, and on the combined data from both trials. Results: Patients with Performance status 0 or 1, with IV stage of tumor and male under 60 years obtain more benefit in terms of overall survival if they receive CIMAvax?EGF. Conclusions: Vaccinated group has a better performance if patients have a performance status 0 or 1, stage IV and age under 60 years. These prognostic factors influence overall survival in a positive way for those patients that received CIMAvax?EGF.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Gonzalez, C. , Dupuy, J. , López, M. , Luaces, P. , Rodríguez, C. , Marinello, G. , Vinagera, E. , Verdecia, B. , Brito, B. , Pérez, L. , Concepción, M. and Crombet-Ramos, T. (2013) Stratified Cox Regression Analysis of Survival under CIMAvax®EGF Vaccine. Journal of Cancer Therapy, 4, 8-14. doi: 10.4236/jct.2013.48A002.


[1] D. Morgensztern, B. Goodgame, M. Q. Baggstrom, F. Gao and R. Govindan, “The Effect of FDG-PET on the Stage Distribution of Non-Small Cell Lung Cancer,” Journal of Thoracic Oncology, Vol. 3, No. 2, 2008, pp. 135-139. doi:10.1097/JTO.0b013e3181622c2c
[2] A. Jemal, R. Siegel, E. Ward, et al., “Cancer Statistics, 2008,” CA: A Cancer Journal for Clinicians, Vol. 58, No. 2, 2008, pp. 71-96. doi:10.3322/CA.2007.0010
[3] V. Westeel and A. Depierre, “Combined Modality Treatment of Non-Small-Cell Lung Cancer,” American Journal of Respiratory Medicine, Vol. 2, No. 6, 2003, pp. 477-490. doi:10.1007/BF03256675
[4] D. S. Ettinger, W. Akerley, G. Bepler, et al., “Non-Small Cell Lung Cancer: Clinical Practice Guidelines in Oncology,” Journal of the National Comprehensive Cancer Network, Vol. 8, No. 7, 2010, pp. 740-801.
[5] J. P. C. Grutters, A. G. H. Kessels, M. Pijls-Johannesma, D. De Ruysscher, M. A. Joore and P. Lambin, “Comparison of the Effectiveness of Radiotherapy with Photons, Protons and Carbon-Ions for Non-Small Cell Lung Cancer: A Meta-Analysis,” Radiotherapy and Oncology, Vol. 95, No. 1, 2010, pp. 32-40. doi:10.1016/j.radonc.2009.08.003
[6] R. Timmerman, R. Paulus, J. Galvin, et al., “Stereotactic Body Radiation Therapy for Inoperable Early Stage Lung Cancer,” JAMA, Vol. 303, No. 11, 2010, pp. 1070-1076. doi:10.1001/jama.2010.261
[7] J. H. Schiller, D. Harrington, C. Belani, et al, “Comparison of four Chemotherapy Regimens for Advanced NonSmall-Cell Lung Cancer,” New England Journal of Medicine, Vol. 346, 2002, pp. 92-98. doi:10.1056/NEJMoa011954
[8] A. Sandler, R. Gray, M. Perry, et al, “Paclitaxel-Carboplatin Alone or with Bevacizumab for Non-Small-Cell Lung Cancer,” New England Journal of Medicine, Vol. 355, 2006, pp. 2542-2550. doi:10.1056/NEJMoa061884
[9] National Institutes of Health, National Cancer Institute Web Site, 2012.
[10] T. Ciuleanu, T. Brodowicz, C. Zielinski, et al, “Maintenance Pemetrexed plus Best Supportive Care versus Placebo plus Best Supportive Care for Non-Small-Cell Lung Cancer: A Randomised, Double-Blind, Phase 3 Study,” Lancet, Vol. 374, No. 9699, 2009, pp. 1432-1440. doi:10.1016/S0140-6736(09)61497-5
[11] T. Mitsudomi, S. Morita, Y. Yatabe, et al., “Gefitinib versus Cisplatin plus Docetaxel in Patients with Non-SmallCell Lung Cancer Harbouring Mutations of the Epidermal Growth Factor Receptor (WJTOG3405): An Open Label, Randomised Phase 3 Trial,” Lancet Oncology, Vol. 11, No. 2, 2010, pp. 121-128. doi:10.1016/S1470-2045(09)70364-X
[12] G. J. Todaro, J. E. DeLarco and S. Cohen, “Transformation by Murine and Feline Sarcoma Viruses Specifically Blocks Binding of Epidermal Growth Factor to Cells,” Nature, Vol. 264, 1976, pp. 26-31. doi:10.1038/264026a0
[13] R. S. Herbst, J. V. Heymach and S. M. Lippman, “Lung Cancer,” New England Journal of Medicine, Vol. 359, 2008, pp. 1367-1380. doi:10.1056/NEJMra0802714
[14] G. González, E. Montero, K. León, I. R. Cohen and A. Lage, “Autoimmunization to Epidermal Growth Factor, a Component of the Immunological Homunculus,” Autoimmunity Reviews, Vol. 1, No. 1-2, 2002, pp. 89-95. doi:10.1016/S1568-9972(01)00015-5
[15] A. Lage, T. Crombet and G. González, “Targeting Epidermal Growth Factor Receptor Signalling: Early Results and Future Trends in Oncology,” Annals of Medicine, Vol. 35, No. 5, 2003, pp. 327-336.
[16] G. González and A. Lage, “Cancer Vaccines for Hormone Immune-Deprivation: The EGF Vaccine Approach: Leading Topics in Cancer Research,” Chapter 11, Nova Publishers, 2007.
[17] G. González and A. Lage, “Cancer Vaccines for Hormone/Growth Factor Immune Deprivation: A Feasible Approach for Cancer Treatment,” Current Cancer Drug Targets, Vol. 7, No. 3, 2007, pp. 229-241. doi:10.2174/156800907780618310
[18] G. Toffoli, E. De Mattia, E. Cecchin, P. Biason, S. Masier and G. Corona, “Pharmacology of Epidermal Growth Factor Inhibitors,” International Journal of Biological Markers, Vol. 22, No. 1, 2007, pp. S24-S39.
[19] F. R. Hirsch, M. Varella-García and F. Cappuzzo, “Predictive Value of EGFR and HER2 Overexpression in Advanced Non-Small-Cell Lung Cancer,” Oncogene, Vol. 28, Suppl. 1, 2009, pp. S32-S37. doi:10.1038/onc.2009.199
[20] D. Collett, “Modeling Survival Data in Medical Research,” Chapman & Hall, London, 1994.
[21] T. M. Therneau and P. M. Grambsch, “Modeling Survival Data: Extending the Cox Model,” Springer, New York, 2000.
[22] T. Martinussen and T. H. Scheike, “Dynamic Regression Models for Survival Data,” Springer, New York, 2006.
[23] E. Arjas, “A Graphical Method for Assessing Goodness of Fit in Cox’s Proportional Hazards Model,” Journal of the American Statistical Association, Vol. 83, No. 401, 1988, pp. 204-212. doi:10.1080/01621459.1988.10478588
[24] D. Schoenfeld, “Partial Residuals for the Proportional Hazards Model,” Biometrika, Vol. 69, No. 1, 1982, pp. 239-241. doi:10.1093/biomet/69.1.239
[25] R. D. Gill and M. Schumacher, “A Simple Test for the Proportional Hazards Assumption,” Biometrika, Vol. 74, No. 2, 1987, pp. 289-300. doi:10.1093/biomet/74.2.289
[26] I. Persson, “Essays on the Assumption of Proportional Hazards in Cox Regression,” 2002.
[27] M. Schemper, “Cox Analysis of Survival Data with Non Proportional Hazards Functions,” The Statistician, Vol. 41, No. 4, 1992, pp. 455-465. doi:10.2307/2349009
[28] J. P. Klein and M. L. Moeschberger, “Survival Analysis Techniques for Censored and Truncated Data,” Springer, New York, 1997.
[29] N. Ata and T. M. S?ozer, “Cox Regression Models with Non Proportional Hazards Applied to Lung Cancer Survival Data,” Journal of Mathematics and Statistics, Vol. 36, No. 2, 2007, pp. 157-167.
[30] D. G. Kleinbaum, “Survival Analysis: A Self-Learning Test,” Sprienger, New York, 1996. doi:10.1007/978-1-4757-2555-1
[31] L. D. Fisher and D. Y. Lin, “Time-Dependent Covariates in the Cox Proportional Hazards Regression Model,” Annual Review of Public Health, Vol. 20, 1999, pp. 145-157. doi:10.1146/annurev.publhealth.20.1.145

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.