Share This Article:

Assessment of LLLT systemic effects on thyroid hormones function after dental titanium implant installation: An experimental rabbit model

Full-Text HTML Download Download as PDF (Size:600KB) PP. 933-940
DOI: 10.4236/ns.2013.58113    4,254 Downloads   8,648 Views   Citations


This study aimed to assess the systemic effect of LLLT on thyroid gland functioning and consequently on calcium regulation through Triiodothyronine (T3) and Thyroxine (T4) measurements in rabbits’ serum. A total of thirty two New Zealand male rabbits were randomly distributed in four groups with eight animals each: control group C (nonirradiated animals), group EI (5 J/cm2 per session), group EII (10 J/cm2 per session) and group EIII (20 J/cm2 per session). All animals underwent lower left incisor extraction followed by immediate insertion of an osseintegrated implant, providing an equality of initial clinical condition between the groups. The experimental groups were irradiated with aluminium gallium arsenide diode laser (GaAlAs, λ = 830 nm, 50 mW, CW), during 13 days at each 48 hours, totalizing 7 sessions. Laboratorial T3 and T4 measurements were done in four distinct moments (before surgical procedure, immediately after surgical procedure, after the first LLLT session and after the last LLLT session) in all animals. The results obtained showed statistically significant differences in Triiodothyronine values between the groups throughout the experiment. It was concluded that the LLLT, in the protocol of irradiation used in this study, promoted a significantly alteration on rabbits’ serum hormonal levels.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Mayer, L. , Gomes, F. , Baraldi, C. , Weber, J. and Oliveira, M. (2013) Assessment of LLLT systemic effects on thyroid hormones function after dental titanium implant installation: An experimental rabbit model. Natural Science, 5, 933-940. doi: 10.4236/ns.2013.58113.


[1] Kucerová, H., Dostálová, T., Himmlova, L., Bártová, J. and Mazánek, J. (2000) Low level laser therapy after mo lar extraction. Journal of Clinical Laser Medicine and Surgery, 6, 309-315.
[2] Basford, J.R. (1995) Low intensity laser therapy: Still not an established clinical tool. Lasers in Surgery and Medi cine, 4, 331-342. doi:10.1002/lsm.1900160404
[3] García-Morales, J.M., Tortamano-Neto, P., Todescan, F.F., de Andrade, J.C., Jr., Marotti, J. and Zezell, D.M. (2012) Stability of dental implants after irradiation with an 830 nm low-level laser: A double-blind randomized clinical study. Lasers in Medical Science, 4, 703-711. doi:10.1007/s10103-011-0948-4
[4] Takeda, Y. (1988) Irradiation effect of low-energy laser on alveolar bone after tooth extraction: Experimental study in rats. International Journal of Oral and Maxillo facial Surgery, 6, 388-391. doi:10.1016/S0901-5027(88)80070-5
[5] Rigau, J., Trelles, M.A, Calderhead, R.G. and Mayayo, E. (1991) Changes in fibroblast proliferation and metabo lism following “in vitro” helium-neon laser irradiation. Laser Therapy, 1, 25-33.
[6] Silva Jr., A.N., Pinheiro, A.L., Oliveira, M.G., Weismann, R., Ramalho, L.M. and Nicolau, R.A. (2002) Computer ized morphometric assessment of the effect of low-level laser therapy on bone repair: An experimental animal study. Journal of Clinical Laser Medicine and Surgery, 2, 83-87. doi:10.1089/104454702753768061
[7] do Nascimento, P.M., Pinheiro, A.L., Salgado, M.A. and Ramalho, L.M. (2004) A preliminary report on the effect of laser therapy on the healing of cutaneous surgical wounds as a consequence of an inversely proportional re lationship between wavelength and intensity: Histological study in rats. Photomedicine and Laser Surgery, 6, 513-518. doi:10.1089/pho.2004.22.513
[8] Weber, J.B., Pinheiro, A.L., de Oliveira, M.G., Oliveira, F.A. and Ramalho, L.M. (2006) Laser therapy improves healing of bone defects submitted to autologous bone graft. Photomedicine and Laser Surgery, 1, 38-44. doi:10.1089/pho.2006.24.38
[9] Mohammed, I.F., Al-Mustawfi, N. and Kaka, L.N. (2007) Promotion of regenerative processes in injured peripheral nerve induced by low-level laser therapy. Photomedicine and Laser Surgery, 2, 107-111. doi:10.1089/pho.2006.1090
[10] Soares, L.P., Oliveira, M.G., Pinheiro, A.L., Fronza, B.R. and Maciel, M.E. (2008) Effects of laser therapy on ex perimental wound healing using oxidized regenerated ce lulose hemostat. Photomedicine and Laser Surgery, 1, 10-13. doi:10.1089/pho.2007.2115
[11] Freddo, A.L., Rodrigo, S.M., Massotti, F.P., Etges, A. and de Oliveira, M.G. (2009) Effect of low-level laser therapy after implantation of poly-L-lactic/polyglycolic acid in the femurs of rats. Lasers in Medical Science, 5, 721-728. doi:10.1007/s10103-008-0627-2
[12] Azevedo, L.H., de Paula Eduardo, F., Moreira, M.S., de Paula Eduardo, C. and Marques, M.M. (2006) Influence of different power densities of LILT on cultured human fibroblast growth: A pilot study. Lasers in Medical Sci ence, 2, 86-89. doi:10.1007/s10103-006-0379-9
[13] Corazza, A.V., Jorge, J., Kurachi, C. and Bagnato, V.S. (2007) Photobiomodulation on the angiogenesis of skin wounds in rats using different light sources. Photome dicine and Laser Surgery, 2, 102-106. doi:10.1089/pho.2006.2011
[14] de Oliveira, R.F., Oliveira, D.A., Monteiro, W., Zangaro, R.A., Magini, M. and Soares, C.P. (2008) Comparison between the effect of low-level laser therapy and low-in tensity pulsed ultrasonic irradiation in vitro. Photome dicine and Laser Surgery, 1, 6-9.
[15] Pinheiro, A.L. (2009) Advances and perspectives on tis sue repair and healing. Photomedicine and Laser Surgery, 6, 833-836. doi:10.1089/pho.2009.2716
[16] Maluf, A.P., Maluf, R.P., Brito, C.R., Franca, F.M. and de Brito, R.B., Jr. (2010) Mechanical evaluation of the influ ence of low-level laser therapy in secondary stability of implants in mice shinbones. Lasers in Medical Science, 5, 693-698. doi:10.1007/s10103-010-0778-9
[17] Campanha, B.P., Gallina, C., Geremia, T., Loro, R.C., Valiati, R., Hübler, R. and de Oliveira, M.G. (2010) Low-level laser therapy for implants without initial sta bility. Photomedicine and Laser Surgery, 3, 365-369. doi:10.1089/pho.2008.2429
[18] Pereira, C.L., Sallum, E.A., Nociti, F.H., Jr. and Moreira, R.W. (2009) The effect of low-intensity laser therapy on bone healing around titanium implants: A histometric study in rabbits. The International Journal of Oral & Maxillofacial Implants, 1, 47-51.
[19] Lopes, C.B., Pinheiro, A.L., Sathaiah, S., da Silva, N.S. and Salgado, M.A. (2007) Infrared laser photobiomodula tion (lambda 830 nm) on bone tissue around dental im plants: A Raman spectroscopy and scanning electronic microscopy study in rabbits. Photomedicine and Laser Surgery, 2, 96-101. doi:10.1089/pho.2006.2030
[20] Khadra, M., Ronold, H.J., Lyngstadaas, S.P., Ellingsen, J.E. and Haanaes, H.R. (2004) Low-level laser therapy stimulates bone-implant interaction: An experimental study in rabbits. Clinical Oral Implants Research, 3, 325-332. doi:10.1111/j.1600-0501.2004.00994.x
[21] Lopes, C.B., Pinheiro, A.L., Sathaiah, S., Duarte, J. and Cristinamartins, M. (2005) Infrared laser light reduces loading time of dental implants: A Raman spectroscopic study. Photomedicine and Laser Surgery, 1, 27-31. doi:10.1089/pho.2005.23.27
[22] Pinheiro, A.L.B., Lopes, C.B., Sathaiah, S. and Duarte, J. (2003) Laser biomodulation in bone implants: A Raman spectral study. International Congress Series, 1248, 449-451. doi:10.1016/S0531-5131(03)00061-X
[23] Kim, Y.D., Kim, S.S., Hwang, D.S., Kim, S.G., Kwon, Y.H., Shin, S.H., Kim, U.K., Kim, J.R. and Chung, I.K. (2007) Effect of low-level laser treatment after installa tion of dental titanium implant-immunohistochemical study of RANKL, RANK, OPG: An experimental study in rats. Lasers in Surgery and Medicine, 5, 441-450. doi:10.1002/lsm.20508
[24] Kim, Y.D., Kim, S.S., Hwang, D.S., Kim, S.G., Kwon, Y.H., Shin, S.H., Kim, U.K., Kim, J.R. and Chung, I.K. (2007) Effect of low-level laser treatment after installa tion of dental titanium implant-immunohistochemical study of vascular endotelial growth fator: An experimen tal study in rats. Laser Physics Letters, 9, 681-685. doi:10.1002/lapl.200710036
[25] Jakse, N., Payer, M., Tangl, S., Berghold, A., Kirmeier, R. and Lorenzoni, M. (2007) Influence of low-level laser treatment on bone regeneration and osseointegration of dental implants following sinus augmentation. An expe rimental study on sheep. Clinical Oral Implants Research, 4, 517-524. doi:10.1111/j.1600-0501.2007.01369.x
[26] Rochkind, S., Rousso, M., Nissan, M., Villarreal, M., Barr-Nea, L. and Rees, D.G. (1989) Systemic effects of low-power laser irradiation on the peripheral and central nervous system, cutaneous wounds and burns. Lasers in Surgery and Medicine, 2, 174-182. doi:10.1002/lsm.1900090214
[27] Smith-Agreda, V. (1985) Aportaciones al estudio de las interacciones morfoquímicas de las células adenohipofi sarias tras la estimulación com laser He/Ne 6328 nm de baja potencia. Clinical Laser, 1, 51-62.
[28] Fisher, D.A. (1996) Physiological variations in thyroid hormones: Physiological and pathophysiological consid erations. Clinical Chemistry, 1, 135-139.
[29] Parrado, C., Peláez, A., Vidal, L. and Pérez de Vargas, I. (1990) Quantitative study of the morphological changes in thyroid gland following IR laser irradiation. Lasers in Medical Science, 77, 77-80. doi:10.1007/BF02032627
[30] Parrado, C., Albornoz, F.C., Vidal, L. and Pérez de Vargas, I. (1999) A quantitative investigation of microvascular changes in the thyroid gland after infrared (IR) laser ra diation. Histology and Histopathology, 4, 1067-1071.
[31] Azevedo, L.H., Aranha, A.C., Stolf, S.F., Eduardo, C.P. and Vieira, M.M. (2005) Evaluation of low intensity laser effects on the thyroid gland of male mice. Photomedicine and Laser Surgery, 6, 567-570. doi:10.1089/pho.2005.23.567
[32] de Jong, W.C., Korfage, J.A. and Langenbach, G.E. (2010) Variations in habitual bone strains in vivo: Long bone ver sus mandible. Journal of Structural Biology, 3, 311-318. doi:10.1016/j.jsb.2010.06.013
[33] Rodrigo, S.M., Cunha, A., Pozza, D.H., Blaya, D.S., Moraes, J.F., Weber, J.B. and Oliveira, M.G. (2009) Analysis of the systemic effect of red and infrared laser therapy on wound repair. Photomedicine and Laser Sur gery, 6, 929-935. doi:10.1089/pho.2008.2306
[34] Fronza, B., Somacal, T., Mayer, L., Moraes, J.F., Oliveira, M.G. and Weber, J.B. (2013) Assessment of the systemic effects of low-level laser therapy (LLLT) on thyroid hor mone function in a rabbit model. International Journal of Oral and Maxillofacial Surgery, 1, 26-30. doi:10.1016/j.ijom.2012.06.017
[35] Lerma, E., Hevia, A., Rodrigo, P., Gonzalez-Campora, R., Armas, J.R. and Galera, H. (1991) The effect of HeNe laser radiation on the thyroid gland of the rat. Interna tional Journal of Experimental Pathology, 4, 379-385.
[36] Steinbeck, M.J. and Wyner, L.R. (1993) Immunoassay and Related Principles. In: Anderson, S.C. and Cockayne, S., Eds., Clinical Chemistry: Concepts and Applications, HBJ International, Saunders, Philadelphia, 96-99.
[37] Kolávorá, H., Ditrichová, D. and Wagner, J. (1999) Pene tration of the laser light into the skin in vitro. Lasers in Surgery and Medicine, 3, 231-235.
[38] Belkin, M. and Schwartz, M. (1989) New biological phenomena associated with laser radiation. Health Physics, 5, 687-690. doi:10.1097/00004032-198905000-00014
[39] Schindl, A. (2000) Low-Intensity laser therapy: A review. Journal of Investigative Medicine, 5, 312-326.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.