Enhanced Thermal Conductivity of Carbon Nanotube Arrays by Carbonizing Impregnated Phenolic Resins

Abstract

A carbonization method is reported to improve the thermal conductivity of carbon nanotube (CNT) arrays. After being impregnated with phenolic resins, CNT arrays were carbonized at a temperature up to 1400°C. As a result, pyrolytic carbon was formed and connected non-neighboring CNTs. The pyrolysis improved the room temperature conductivity from below 2 W/m·K up to 11.8 and 14.6 W/m·K with carbonization at 800°C and 1400°C, respectively. Besides the light mass density of 1.1 g/cm3, the C/C composites demonstrated high thermal stability and a higher conductivity up to 21.4 W/m·K when working at 500°C.

Share and Cite:

D. Hu, H. Chen, Z. Yong, M. Chen, X. Zhang, Q. Li, Z. Fan and Z. Feng, "Enhanced Thermal Conductivity of Carbon Nanotube Arrays by Carbonizing Impregnated Phenolic Resins," Materials Sciences and Applications, Vol. 4 No. 8, 2013, pp. 453-457. doi: 10.4236/msa.2013.48055.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. Berber, Y.-K. Kwon and D. Tománek, “Unusually High Thermal Conductivity of Carbon Nanotubes,” Physical Review Letters, Vol. 84, No. 20, 2000, pp. 4613-4616. doi:10.1103/PhysRevLett.84.4613
[2] P. Kim, L. Shi, A. Majumdar and P. L. McEuen, “Thermal Transport Measurements of Individual Multiwalled Nanotubes,” Physical Review Letters, Vol. 87, No. 21, 2001, Article ID: 215502. doi:10.1103/PhysRevLett.87.215502
[3] M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, H. Abe and T. Shimizu, “Measuring the Thermal Conductivity of a Single Carbon Nanotube,” Physical Review Letters, Vol. 95, No. 6, 2005, Article ID: 065502. doi:10.1103/PhysRevLett.95.065502
[4] E. Pop, D. Mann, Q. Wang, K. Goodson and H. Dai, “Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature,” Nano Letters, Vol. 6, No. 1, 2006, pp. 96-100. doi:10.1021/nl052145f
[5] M. J. Biercuk, M. C. Llaguno, M. Radosavljevic, J. K. Hyun, A. T. Johnson and J. E. Fischer, “Carbon Nanotube Composites for Thermal Management,” Applied Physics Letters, Vol. 80, No. 15, 2002, pp. 2767-2769. doi:10.1063/1.1469696
[6] C. H. Liu, H. Huang, Y. Wu and S. S. Fan, “Thermal Conductivity Improvement of Silicone Elastomer with Carbon Nanotube Loading,” Applied Physics Letters, Vol. 84, No. 21, 2004, pp. 4248-4250. doi:10.1063/1.1756680
[7] T. Morishita, M. Matsushita, Y. Katagiri and K. Fukumori, “A Novel Morphological Model for Carbon Nanotube/Polymer Composites Having High Thermal Conductivity and Electrical Insulation,” Journal of Materials Chemistry, Vol. 21, No. 15, 2011, pp. 5610-5614. doi:10.1039/c0jm04007j
[8] A. M. Marconnet, N. Yamamoto, M. A. Panzer, B. L. Wardle and K. E. Goodson, “Thermal Conduction in Aligned Carbon Nanotube-Polymer Nanocomposites with High Packing Density,” ACS Nano, Vol. 5, No. 6, 2011, pp. 4818-4825. doi:10.1021/nn200847u
[9] D. J. Yang, Q. Zhang, G. Chen, S. F. Yoon, J. Ahn, S. G. Wang, Q. Zhou, Q. Wang and J. Q. Li, “Thermal Conductivity of Multiwalled Carbon Nanotubes,” Physical Review B, Vol. 66, No. 16, 2002, Article ID: 165440. doi:10.1103/PhysRevB.66.165440
[10] X. J. Hu, A. A. Padilla, J. Xu, T. S. Fisher and K. E. Goodson, “3-Omega Measurements of Vertically Oriented Carbon Nanotubes on Silicon,” Journal of Heat Transfer, Vol. 128, No. 11, 2006, pp. 1109-1113. doi:10.1115/1.2352778
[11] Y. Xu, Y. Zhang, E. Suhir and X. Wang, “Thermal Properties of Carbon Nanotube Array Used for Integrated Circuit Cooling,” Journal of Applied Physics, Vol. 100, No. 7, 2006, Article ID: 074302. doi:10.1063/1.2337254
[12] S. Shaikh, L. Li, K. Lafdi and J. Huie, “Thermal Conductivity of an Aligned Carbon Nanotube Array,” Carbon, Vol. 45, No. 13, 2007, pp. 2608-2613. doi:10.1016/j.carbon.2007.08.011
[13] M. B. Jakubinek, M. Anne White, G. Li, C. Jayasinghe, W. Cho, M. J. Schulz and V. Shanov, “Thermal and Electrical Conductivity of Tall, Vertically Aligned Carbon Nanotube Arrays,” Carbon, Vol. 48, No. 13, 2010, pp. 3947-3952. doi:10.1016/j.carbon.2010.06.063
[14] Q. Ngo, B. A. Cruden, A. M. Cassell, G. Sims, M. Meyyappan, J. Li and C. Y. Yang, “Thermal Interface Properties of Cu filled Vertically Aligned Carbon Nanofiber Arrays,” Nano Letters, Vol. 4, No. 12, 2004, pp. 2403-2407. doi:10.1021/nl048506t
[15] M. A. Panzer, G. Zhang, D. Mann, X. Hu, E. Pop, H. Dai and K. E. Goodson, “Thermal Properties of Metal-Coated Vertically Aligned Single-Wall Nanotube Arrays,” Journal of Heat Transfer, Vol. 130, No. 5, 2008, Article ID: 052401. doi:10.1115/1.2885159
[16] H. Huang, C. Liu, Y. Wu and S. Fan, “Aligned Carbon Nanotube Composite Films for Thermal Management,” Advanced Materials, Vol. 17, No. 13, 2005, pp. 1652-1656. doi:10.1002/adma.200500467
[17] T. Borca-Tasciuc, M. Mazumder, Y. Son, S. K. Pal, L. S. Schadler and P. M. Ajayan, “Anisotropic Thermal Diffusivity Characterization of Aligned Carbon NanotubePolymer Composites,” Journal of Nanoscience and Nanotechnology, Vol. 7, No. 4-5, 2007, pp. 1581-1588. doi:10.1166/jnn.2007.657
[18] W. Lin, K.-S. Moon and C. P. Wong, “A Combined Process of in Situ Functionalization and Microwave Treatment to Achieve Ultrasmall Thermal Expansion of Aligned Carbon Nanotube-Polymer Nanocomposites: Toward Applications as Thermal Interface Materials,” Advanced Materials, Vol. 21, No. 23, 2009, pp. 2421-2424. doi:10.1002/adma.200803548
[19] W. Lin, R. Zhang, K.-S. Moon and C. P. Wong, “Molecular Phonon Couplers at Carbon Nanotube/Substrate Interface to Enhance Interfacial Thermal Transport,” Carbon, Vol. 48, No. 1, 2010, pp. 107-113. doi:10.1016/j.carbon.2009.08.033
[20] Q.-M. Gong, Z. Li, X.-D. Bai, D. Li, Y. Zhao and J. Liang, “Thermal Properties of Aligned Carbon Nanotube/ Carbon Nanocomposites,” Materials Science and Engineering: A, Vol. 384, No. 1-2, 2004, pp. 209-214. doi:10.1016/j.msea.2004.06.006
[21] H. Li, C. Liu and S. Fan, “Catalyzed Filling of Carbon Nanotube Array with Graphite and the Thermal Properties of the Composites,” The Journal of Physical Chemistry C, Vol. 112, No. 15, 2008, pp. 5840-5842. doi:10.1021/jp7119697
[22] C. Singh, M. S. P. Shaffer, K. K. K. Koziol, I. A. Kinloch and A. H. Windle, “Towards the Production of LargeScale Aligned Carbon Nanotubes,” Chemical Physics Letters, Vol. 372, No. 5-6, 2003, pp. 860-865. doi:10.1016/S0009-2614(03)00531-1
[23] K. A. Trick and T. E. Saliba, “Mechanisms of the Pyrolysis of Phenolic Resin in a Carbon/Phenolic Composite,” Carbon, Vol. 33, No. 11, 1995, pp. 1509-1515. doi:10.1016/0008-6223(95)00092-R
[24] C.-L. Liu, W.-S. Dong, J.-R. Song and L. Liu, “Evolution of Microstructure and Properties of Phenolic Fibers during Carbonization,” Materials Science and Engineering: A, Vol. 459, No. 1-2, 2007, pp. 347-354. doi:10.1016/j.msea.2007.02.067
[25] R. J. Nemanich and S. A. Solin, “Firstand Second-Order Raman Scattering from Finite-Size Crystals of Graphite,” Physical Review B, Vol. 20, No. 2, 1979, pp. 392-401. doi:10.1103/PhysRevB.20.392

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.