Effect of Electrode Surface Modification by Sulfide on QCM Based Protein Biosensor

Abstract

The rapid development of surface sensitive biosensor technologies requires optimum control of surface modification to provide reliable and reproducible results. With the aim to assemble a quartz crystal microbalance (QCM)-based protein biosensor, we focus our attention on sulfide receptor and its integration with the surface of the electrode. Here, we present different surface modification processing time to allow sulfide molecules to be immobilized to gold coated sensor for QCM sensing. The optimum surface modification processing time is also obtained by bovine serum albumin (BSA) binding measurement.

Share and Cite:

Y. Lin, Y. Chen and L. Chen, "Effect of Electrode Surface Modification by Sulfide on QCM Based Protein Biosensor," Optics and Photonics Journal, Vol. 3 No. 2B, 2013, pp. 305-307. doi: 10.4236/opj.2013.32B071.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Campàs and I. Katakis, “DNA Biochip Arraying, Detection and Amplification Strategies Trend,” Analytical Chemistry, Vol. 23, 2004, pp. 49-62.
[2] S. Rodriguez-Mozaz, M. J. López de Alda, M.-P. Marco and D. Barceló, “Biosensors for Environmental Monitoring A Global Perspective,” Talanta, Vol. 65, 2005, pp. 291-297, “Title of Paper If Known,” unpublished. doi:10.1016/S0039-9140(04)00381-9
[3] I. Mannelli, M. Minunni, S. Tombelli and M. Mascini “Quartz Crystal Microbalance (QCM) Affinity Biosensor for Genetically Modified Organism (GMOs) Detection,” Biosensors and Bioelectronics, Vol. 18, 2003, pp. 129-140.doi:10.1016/S0956-5663(02)00166-5
[4] J. Rickert, A. Brecht and W. Gopel, “Quartz Crystal Microbalances for Quantitative Biosensing and Characterizing Protein Multilayers,” Biosensors and Bioelectronics, Vol.12, pp. 567-575, Mill Valley, CA: University Science, 1989.
[5] S. Lin, C. C. Lu, H. F. Chien and S. M. Hsu. “An On-line Quantitative Immunoassay System Based on A Quartz Crystal Crobalance,” Journal of Immunological Methods, Vol. 239, No.1-2, 2000, pp. 121-124. doi:10.1016/S0022-1759(00)00184-8
[6] Y. Okahata, Y. Matsunobu, K. Ijiro, M. Mukae, A. Murakami and K. Makino, “Hybridization of Nucleic Acids Immobilized on A Quartz Crystal Microbalance, Journal of the American Chemical Society,Vol.114,1992,pp. 8299-8300.doi:10.1021/ja00047a056
[7] F. Höök, A. Ray, B. Nordén and B. Kasemo, “Characterization of PNA and DNA Immobilization and Subsequent Hybridization with DNA Using Acoustic-Shear-Wave Attenuation Measurements,” Langmuir, Vol. 17, 2001, pp. 8305-8312.doi:10.1021/la0107704
[8] E. Huang, M. Satjapipat, S. Han and F. F Zhou, “Surface Structure and Coverage of An Oligonucleotide Probe Tethered onto A Gold Substrate and Its Hybridization Efficiency for A Polynucleotide Target,” Langmuir, Vol. 17 2001, pp. 1215-1224.doi:10.1021/la001019i
[9] G. Sauerbrey, Z. Physik, Vol. 155, 1959, p. 206.doi:10.1007/BF01337937

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.