Predominance of constitutional chromosomal rearrangements in human chromosomal fragile sites


Chromosomal fragile sites (CFSs) are loci or regions susceptible to spontaneous or induced occurrence of gaps, breaks and rearrangements. In this work, we studied the data of 4535 patients stored at DECIPHER (Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources). We mapped fragile sites to chromosomal bands and divided the 23 chromosomes into fragile and non-fragile sites. The frequency of rearrangements at the chromosomal location of clones found to be deleted or duplicated in the array/CGH analysis, provided by DECIPHER, was compared in Chromosomal Fragile Sites vs. non-Fragile Sites of the human genome. The POSSUM Web was used to complement this study. The results indicated 1) a predominance of rearrangements in CFSs, 2) the absence of statistically significant difference between the frequency of rearrangements in common CFSs vs. rare CFSs, 3) a predominance of deletions over duplications in CFSs. These results on constitutional chromosomal rearrangements are evocative of the findings previously reported by others relatively to cancer supporting the current line of evidence and suggesting that a common mechanism can underlie the generation of constitutional and somatic rearrangements. The combination of insights obtained from our results and their interrelationships can indicate strategies by which the mechanisms can be targeted with preventive medical interventions.

Share and Cite:

Sequeira, I. , Mexia, J. , Santiago, J. , Mamede, R. , Silva, E. , Santos, J. , Faria, D. , Rueff, J. and Brás, A. (2013) Predominance of constitutional chromosomal rearrangements in human chromosomal fragile sites. Open Journal of Genetics, 3, 8-13. doi: 10.4236/ojgen.2013.32A3002.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Lubs, H.A. (1969) A marker X chromosome. American Journal of Human Genetics, 21, 231-44.
[2] Speicher, M.R. (2010) Chromosomes. In: Speicher, M. R., Antonarakis, S.E. and Motulsky, A.G., Eds., Vogel and Motulsky’s Human Genetics Problems and Approaches, Springer Verlag, Berlin, Heidelberg, 55-138.
[3] Mrasek, K., Schoder, C., Teichmann, A.C., Behr, K., Franze, B., Wilhelm, K., Blaurock, N., Claussen, U., Liehr, T. and Weise A. (2010) Global screening and extended nomenclature for 230 aphidicolin-inducible fragile sites, including 61 yet unreported ones. International Journal of Oncology, 36, 929-940.
[4] Lukusa, T. and Fryns, J.P. (2008) Human chromosome fragility. Biochimica et Biophysica Acta, 1779, 3-16. doi:10.1016/j.bbagrm.2007.10.005
[5] Curatolo, A., Limongi, Z.M., Pelliccia, F. and Rocchi, A. (2007) Molecular characterization of the human common fragile site FRA1H. Genes Chromosomes Cancer, 46, 487-493. doi:10.1002/gcc.20432
[6] Zhu, Y., McAvoy, S., Kuhn, R. and Smith, D.I. (2006) RORA, a large common fragile site gene, is involved in cellular stress response. Oncogene, 25, 2901-2908. doi:10.1038/sj.onc.1209314
[7] Dillon, L., Burrow, A. and Wang, Y.-H. (2010) DNA instability at chromosomal fragile sites in cancer. Current Genomics, 11, 326-337. doi:10.2174/138920210791616699
[8] Debacker, K. and Kooy, R.F. (2007) Fragile sites and human disease. Human Molecular Genetics, 16, R150-R158.
[9] Debacker, K., Winnepenninckx, B., Ben-Porat, N., FitzPtrick, D., Van Luijk, R., Scheers, S., Kerem, B. and Frank Kooy, R. (2007) FRA18C: A new aphidicolin-inducible fragile site on chromosome 18q22, possibly associated with in vivo chromosome breakage. Journal of Medical Genetics, 44, 347-352. doi:10.1136/jmg.2006.044628
[10] Mariani, T., Musio, A. and Simi, S. (1995) No statistical association between fragile sites and constitutional chromosome breakpoints. Cancer Genetics and Cytogenetics, 85, 78-81.
[11] Mitsui, J., Takahashi, Y., Goto, J., Tomiyama, H., Ishikawa, S., Yoshino, H., Minami, N., Smith, D.I., Lesage, S., Aburatani, H., Nishino, I., Brice, A., Hattori, N. and Tsuji, S. (2010) Mechanisms of genomic instabilities underlying two common fragile-site-associated loci, PARK2 and DMD, in germ cell and cancer cell lines. The American Journal of Human Genetics, 87, 75-89. doi:10.1016/j.ajhg.2010.06.006
[12] Laganà, A., Russo, F., Sismeiro, C., Giugno, R., Pulvirenti, A. and Ferro, A. (2010) Variability in the incidence of miRNAs and genes in fragile sites and the role of repeats and CpG islands in the distribution of genetic material. PLoS One, 5, e11166. doi:10.1371/journal.pone.0011166
[13] Zlotorynski, E., Rahat, A., Skaug, J., Ben-Porat, N., Ozeri, E., Hershberg, R., Levi, A., Scherer, S.W., Margalit, H. and Kerem, B. (2003) Molecular basis for expression of common and rare fragile sites. Molecular and Cellular Biology, 23, 7143-7151. doi:10.1128/MCB.23.20.7143-7151.2003
[14] Holden, J., Ridgway, P. and Smith, A. (1986) A possible fragile-site at Yq12: Case report and possible relevance to de novo structural rearrangements of the Y-chromosome. American Journal of Medical Genetics, 23, 545-555. doi:10.1002/ajmg.1320230147
[15] Schaaf, C.P., Wiszniewska, J. and Beaudet, A.L. (2011) Copy number and SNP arrays in clinical diagnostics. Annual Review of Genomics and Human Genetics, 12, 25-51. doi:10.1146/annurev-genom-092010-110715
[16] Hochstenbach, R., van Binsbergen, E., Engelen, J., Nieuwint, A., Polstra, A., Poddighe, P., Ruivenkamp, C., Sikkema-Raddatz, B., Smeets, D. and Poot, M. (2009) Array analysis and karyotyping: Workflow consequences based on a retrospective study of 36,325 patients with idiopathic developmental delay in the Netherland. European Journal of Medical Genetics, 52, 161-169. doi:10.1016/j.ejmg.2009.03.015
[17] Burrow, A.A., Williams, L.E., Pierce, L.C. and Wang, Y.H. (2009) Over half of breakpoints in gene pairs involved in cancer-specific recurrent translocations are mapped to human chromosomal fragile sites. BMC Genomics, 10, 59. doi:10.1186/1471-2164-10-59
[18] Mitsui, J. and Tsuji, S. (2011) Common chromosomal fragile sites: Breakages and rearrangements in somatic and germline cells, atlas of genetics and cytogenetics in oncology and haematology.
[19] Puliti, A., Rizzato, C., Conti, V., Bedini, A., Gimelli, G., Barale, R. and Sbrana, I. (2010) Low-copy repeats on chromosome 22q11.2 show replication timing switches, DNA flexibility peaks and stress inducible asynchrony, sharing instability features with fragile sites. Mutation Research, 686, 74-83. doi:10.1016/j.mrfmmm.2010.01.021
[20] Savelyeva, L., Sagulenko, E., Schmitt, J.G. and Schwab, M. (2006) Low-frequency common fragile sites: Link to neuropsychiatric disorders? Cancer Letters, 232, 58-69. doi:10.1016/j.canlet.2005.08.033
[21] Sutherland, G.R. and Baker, E. (2000) The clinical significance of fragile Sites on human chromosomes. Clinical Genetics, 58, 157-161. doi:10.1034/j.1399-0004.2000.580301.x
[22] Glover, T.W. (1998) Instability at chromosomal fragile sites. Recent Results in Cancer Research, 154, 185-199. doi:10.1007/978-3-642-46870-4_11
[23] Jones, C., Penny, L., Mattina, T., Yu, S., Baker, E., Voullaire, L., Langdon, W.Y., Sutherland, G. R., Richards, R.I. and Tunnacliffe, A. (1995) Association of a chromosome deletion syndrome with a fragile site within the protooncogene CBL2. Nature, 376, 145-149. doi:10.1038/376145a0
[24] Gedeon, A.K., Baker, E., Robinson, H., Partington, M.W., Gross, B., Manca, A., Korn, B., Poustka, A., Yu, S., Sutherland, G.R. and Mulley, J.C. (1992) Fragile X syndrome without CCG amplification has an FMR1 deletion. Nature Genetics, 1, 341-344. doi:10.1038/ng0892-341
[25] Wohrle, D., Kotzot, D., Hirst, M.C., Manca, A., Korn, B., Schmidt, A., Barbi, G., Rott, H.D., Poustka, A., Davies, K.E. and Steibach, P. (1992) A microdeletion of less than 250 kb, including the proximal part of the FMR-I gene and the fragile-X site, in a male with the clinical pheno-type of fragile X syndrome. The American Journal of Human Genetics, 51, 299-306.
[26] Liu, P., Carvalho, C.M., Hastings, P.J. and Lupski, J.R. (2012) Mechanisms for recurrent and complex human genomic rearrangements. Current Opinion in Genetics & Development, 22, 211-220. doi:10.1016/j.gde.2012.02.012
[27] Turner, D.J., Miretti, M., Rajan, D., Fiegler, H., Carter, N.P., Blayney, M.L., Beck, S. and Hurles, M.E. (2008) The rates of de novo meiotic deletions and duplications causing several genomic disorders in the male germline. Nature Genetics, 40, 90-95. doi:10.1038/ng.2007.40
[28] Letessier, A., Birnbaum, D., Debatisse, M. and Chaffanet, M. (2011) Genome: Does a paucity of initiation events lead to fragility? Medical Sciences (Paris), 27, 707-709. doi:10.1051/medsci/2011278011

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.