Nonlinear Cascaded Femtosecond Third Harmonic Generation by Multi-grating Periodically Poled MgO-doped Lithium Niobate

Abstract

Nonlinear cascaded femtosecond third harmonic generation was experimentally investigated pumped by 100 fs pulses at optical communication band 1550 nm using a multi-grating 5 mol. % MgO-doped periodically poled lithium niobate crystal. The optimized efficiency of 10.8% was achieved with the simultaneous phase-matching of the second harmonic and sum frequency process. And the third harmonic spectrum reached as broad as 8.7 nm because of the choosing of a small group velocity mismatching between the fundamental and second harmonic pulses. Nonlinear cascaded method will provide a reference for the efficient frequency conversion in the high intensity range.

Share and Cite:

S. Zhang, W. You and Z. Huang, "Nonlinear Cascaded Femtosecond Third Harmonic Generation by Multi-grating Periodically Poled MgO-doped Lithium Niobate," Optics and Photonics Journal, Vol. 3 No. 2B, 2013, pp. 50-52. doi: 10.4236/opj.2013.32B012.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] K. Kintaka, M. Fujimura, T. Suhara and H. Nishihara, “Third Harmonic Generation of Nd: YAG Laser Light in Periodically Poled LiNbO3”, Electronic Letters, Vol. 33, No. 17, 1997, pp. 1459-1461. doi:10.1049/el:19970990
[2] S. N. Zhu, Y. Y. Zhu and N. B. Ming, “Quasi-Phase- Matched Third Harmonic Generation in a Quasi- Periodic Optical Superlattice,” Science, Vol. 278, No. 5339, 1997, pp. 843-846. doi:10.1126/science.278.5339.843
[3] C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu and N. B. Ming, “Third-Harmonic Generation in A General Two-Component Quasi-Periodic Optical Superlattice,” Optics Letters, Vol. 26, No. 12, 2001, pp. 899-901. doi:10.1364/OL.26.000899
[4] N. G. R. Broderick, R. T. Bratfalean, T. M. Monro, D. J. Richardson and C. M. de Sterke, “Temperature and Wavelength Tuning of Second-, Third-, and Fourth-Harmonic Generation in A Two-Dimensional Hexagonally Poled Nonlinear Crystal,” Journal of the Optical Society of America B, Vol. 19, No. 9, 2002, pp. 2263-2272. doi:10.1364/JOSAB.19.002263
[5] A. H. Norton and C. M. de Sterke, “Optimal Poling of Nonlinear Photonic Crystals for Frequency Conversion,” Optics Letters, Vol. 28, No. 3, 2003, pp. 188-190.
[6] A. H. Norton and C. M. de Sterke, “Two-Dimensional Poling Patterns for 3rd and 4th Harmonic Generation,” Optics Express, Vol. 11, No. 9, 2003, pp. 1008-1014. doi:10.1364/OE.11.001008
[7] Y. Sheng, S. M. Saltiel and K. Koynov, “Cascaded Third-Harmonic Generation in A Single Short-Range -Ordered Nonlinear Photonic Crystal,” Optics Letters, Vol. 34, No. 5, 2009, pp. 656-658. doi:10.1364/OL.34.000656
[8] N. Fujioka, S. Ashihara, H. Ono, T. Shimura and K. Kuroda, “Cascaded Third-Harmonic Generation of Ultrashort Optical Pulses in Two-Dimensional Quasi-Phase- Matching Gratings,” Journal of the Optical Society of America B, Vol. 24, No.9, 2007, pp. 2394-2405. doi:10.1364/JOSAB.24.002394
[9] D. E. Zelmon, D. L. Small and D. Jundt, “Infrared Corrected Sellmeier Coefficients for Congruently Grown Lithium Niobate and 5 mol.% Magnesium Oxide –Doped Lithium Niobate,” Journal of the Optical Society of America B, Vol. 14, No. 12, 1997, pp. 3319-3322. doi:10.1364/JOSAB.14.003319
[10] Z. C. Huang, C. H. Tu, S. G. Zhang, Y. N. Li, F. Y. Lu, Y. X. Fan and E. B. Li, “Femtosecond Second-Harmonic Generation in Periodically Poled Lithium Niobate Waveguides Written by Femtosecond Laser Pulses,” Optics Letters, Vol. 35, No. 6, 2010, pp. 877-879. doi:10.1364/OL.35.000877
[11] DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to Ultraviolet Measurements of Two-Photon Absorption and N2 in Wide Bandgap Solids,” IEEE Journal of Quantum Electronics, Vol.32, No. 8, 1996, pp. 1324-1333. doi:10.1109/3.511545
[12] N. E. Yu, J. H. Ro, M. Cha, S. Kurimura and T. Taira, “Broadband Quasi-Phase-Matched Second-Harmonic Generation in MgO-Doped Periodically Poled LiNbO3 at the Communications Band,” Optics Letters, Vol. 27, No. 12, 2002, pp. 1046-1048. doi:10.1364/OL.27.001046

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.