Share This Article:

The Determination of Surface Thermodynamic Properties of Nanoparticles by Thermal Analysis

Abstract Full-Text HTML Download Download as PDF (Size:184KB) PP. 16-21
DOI: 10.4236/jmp.2013.47A2003    3,613 Downloads   5,392 Views   Citations

ABSTRACT

The effect of dispersivity on thermodynamic and kinetic parameters of chemical reactions in nanodispersed systems is theoretically investigated. On the basis of the established theoretical dependences the new method of determination of surface thermodynamic properties of nanoparticles (surface enthalpy, surface entropy and surface energy) by thermal analysis (DTA or DSC) was developed. Three examples of calculation of surface properties of nanoparticles were presented to prove the feasibility of this method.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

G. Piloyan, N. Bortnikov and N. Boeva, "The Determination of Surface Thermodynamic Properties of Nanoparticles by Thermal Analysis," Journal of Modern Physics, Vol. 4 No. 7B, 2013, pp. 16-21. doi: 10.4236/jmp.2013.47A2003.

References

[1] Yu. G. Frolov, “Course of Colloid Chemistry,” Khimiya, Moscow, 1982.
[2] Yu. D. Tret’yakov, “Solid Phase Reactions,” Khimiya, Moscow, 1978.
[3] G. O. Piloyan and N. S. Bortnikov, Dokl. Akad. Nauk, Vol. 416, 2007, pp. 247-249.
[4] A. I. Gusev and A. A. Rempel, “Nanocrystal Materials,” Fizmatlit, Moscow, 2001.
[5] T. L. Hill, “Thermodynamics of Small Systems,” Benjamin, New York, 1963.
[6] P. Barret, “Reaction Kinetics in Heterogeneous Chemical Systems,” Elsevier, New York, 1975.
[7] D. A. Frank -Kamenetskii, “Diffusion and Heat Transfer in Chemical Kinetics,” Nauka, Moscow, 1967.
[8] N. M. Emanuel and D. G. Knorre, “Chemical Kinetics,” Vyshaya Shkola, Moscow, 1969.
[9] V. N. Parmon, Dokl. Akad. Nauk, Vol. 413, 2007, pp. 53-59.
[10] G. O. Piloyan, “Introduction to the Theory of Thermal Analysis,” Nauka, Moscow, 1964.
[11] R. L. Reed, L. Weber and B. S. Gottfried, Industrial & Engineering Chemistry Fundamentals, Vol. 4, 1965, pp. 38-46. doi:10.1021/i160013a006
[12] H. E. Kissenger, Analytical Chemistry, Vol. 29, 1957, pp. 1702-1706.
[13] X. Bokhimi, J. A. T. Antonio, M. L. Guzman-Castillo, et al., Journal of Solid State Chemistry, Vol. 161, 2001, pp. 319-326. doi:10.1006/jssc.2001.9320
[14] C. Sarda, F. Mathieu, A. Vajpei and A. Rousset, Journal of Thermal Analysis, Vol. 32, 1987, pp. 865-873. doi:10.1007/BF01913772
[15] J. Majlan, A. Navrotsky and W. H. Casey, Clays Clay Minerals, Vol. 48, 2000, pp. 699-707.
[16] M. I. Gol’dshtein, V. S. Litvinov and B. M. Bronfin, “Metallophysics of High Strength Alloys,” Metallurgiya, Moscow, 1986.
[17] I. N. Frantsevich, F. F. Voronov and S. A. Bakuta, “Handbook on Elastic Constants and Moduli of Elasticity for Metals and Nonmetals,” Naukova Dumka, Kiev, 1982.
[18] S. Clark Jr., “Handbook on Physical Constants,” Geological Society of America, New York, 1966 (Mir, Moscow, 1969).
[19] A. Navrotsky, Proceedings of National Academy of Science of the USA, Vol. 101, 2004, pp. 12096-12101. doi:10.1073/pnas.0404778101

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.