High Osteoconductive Surface of Pure Titanium by Hydrothermal Treatment

Abstract

Surface properties of Ti implants (especially surface hydrophilicity) influence biological responses at the interface between the bone tissue and the implant. However, only a little research reported the effect of surface hydrophilicity on osteoconductivity by in vivo test. We have investigated the surface characteristics and osteoconductivity of titanium implant produced by hydrothermal treatment using distilled water at temperature of 180°C for 3 h, and compared with as-polished and those of implants produced by anodizing in 0.1 M H2SO4 with applied voltage from 0 V to 100 V at 0.1 Vsˉ1 and anodizing followed by hydrothermal treatment. The relationship between hydrophilic surface and osteoconductivity in various surface modifications was examined by in vivo test. In order to maintain the hydrophilicity of the hydrothermal sample surface, it was kept in to the phosphate buffered saline solution (PBS) with 5 times concentration: 5PBS(-) in room temperature. The surface characteristics were evaluated by scanning electron microscopy, XRD, X-ray photoelectron spectroscopy, surface roughness and contact angle measurement using a 2 μL droplet of distilled water. In in vivo testing, the rod samples (Φ2 × 5 mm) were implanted in male rat’s tibiae for 14 days and the bone-implant contact ratio, RB-I, was used to evaluate the osteoconductivity in the cortical and cancellous bone parts, respectively. As a result, hydrothermal treatment without anodizing still produced a smooth surface like an initial surface roughness of as-polished samples, Ra/μm < 0.1 and hydrophilic surface compared with the other processes. On the other hand, the super-hydrophilic surface with water contact angle less than 10 (deg.) and high osteoconductivity up to RB-I = 50% in cortical bone part (about four times higher than as-polished Ti) were provided by only hydrothermal process without anodizing after immersing into 5PBS(-).

Share and Cite:

M. Zuldesmi, A. Waki, K. Kuroda and M. Okido, "High Osteoconductive Surface of Pure Titanium by Hydrothermal Treatment," Journal of Biomaterials and Nanobiotechnology, Vol. 4 No. 3, 2013, pp. 284-290. doi: 10.4236/jbnb.2013.43036.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. Adell, B. Eriksson, U. Lekholm, P. I. Branemark and T. Jemt, “A Long-Term Follow-Up Study of Osseointegrated Implants in the Treatment of Totally Edentulous Jaws,” The International Journal of Oral Maxillofac Implants, Vol. 5, No. 4, 1990, pp. 347-359.
[2] D. Van Steenberghe, U. Lekholm, C. Bolender, T. Folmer, P. Henry, I. Herrmann, et al., “Applicability of Osseointegrated Oral Implants in the Rehabilitation of Partial Edentulism: A Prospective Multicenter Study on 558 Fixtures,” The International Journal of Oral Maxillofac Implants, Vol. 5, No. 3, 1990, pp. 272-281.
[3] M. C. Garcia-Alonso, L. Saldana, G. Valles, J. L. Gonzalez-Carrasco Gonzalez-J. Cabrero, M. E. Martinez, et al., “In Vitro Corrosion Behavior and Osteoblast Response of Thermally Oxidized Ti6Al4V Alloy,” Biomaterials, Vol. 24, No. 1, 2003, pp. 19-26. doi:10.1016/S0142-9612(02)00237-5
[4] D. Buser, N. Broggini, M. Wieland, R. K. Schenk, A. J. Denzer and D. L. Cochran, “Enhanced Bone Apposition to a Chemically Modified SLA Titanium Surface,” Journal of Dental Research, Vol. 83, No. 7, 2004, pp. 529-533. doi:10.1177/154405910408300704
[5] D. L. Cochran, D. Buser, C. M. ten Bruggenkate, D. Weingart, T. M. Taylor and J. P. Bernard, “The Use of Reduced Healing Times on ITI Implants with a Sandblasted and Acid-Etched (SLA) Surface: Early Results from Clinical Trials on ITI SLA Implants,” Clinical Oral Implants Research, Vol. 13 No. 2, 2002, pp. 144-153. doi:10.1034/j.1600-0501.2002.130204.x
[6] C. Eriksson, H. Nygren and K. Ohlson, “Implantation of Hydrophilic and Hydrophobic Titanium Discs in Rat Tibia: Cellular Reactions on the Surfaces during the First 3 Weeks in Bone,” Biomaterials, Vol. 25, No. 19, 2004, pp. 4759-4766. doi:10.1016/j.biomaterials.2003.12.006
[7] J. W. Park, K. B. Park and J. Y. Suh, “Effects of Calcium Ion Incorporation on Bone Healing of Ti6Al4V Alloy Implants in Rabbit Tibiae,” Biomaterials, Vol. 28, No. 22, 2007, pp. 3306-3313. doi:10.1016/j.biomaterials.2007.04.007
[8] G. B. Schneider, R. Zaharias, D. Seabold, J. Keller and C. Stanford, “Differentiation of Preosteoblasts Is Affected by Implant Surface Microtopographies,” Journal of Biomedical Materials Research Part A, Vol. 69, No. 3, 2004, pp. 462-468. doi:10.1002/jbm.a.30016
[9] G. Zhao, Z. Schwartz, M. Wieland, F. Rupp, G.-J. Gerstorfer, D. L. Cochran, et al., “High Surface Energy Enhances Cell Response to Titanium Substrate Microstructure,” Journal of Biomedical Materials Research Part A, Vol. 74A, No. 1, 2005, pp. 49-58. doi:10.1002/jbm.a.30320
[10] I. Jonásová, F.A. Müller, A. Helebrant, J. Strnad and P. Greil, “Biomimeticapatite Formation on Chemically Treated Titanium,” Biomaterials, Vol. 25, No. 7-8, 2004, pp. 1187-1194. doi:10.1016/j.biomaterials.2003.08.009
[11] F. Xiao, K. Tsuru, S. Hayakawa and A. Osaka, “In Vitro Apatite Deposition on Titania Film Derived from Chemical Treatment of Ti Substrates with an Oxysulfate Solution Containing Hydrogen Peroxide at Low Temperature,” Thin Solid Films, Vol. 441, No. 1, 2003, pp. 271276. doi:10.1016/S0040-6090(03)00913-1
[12] J.-M. Wu, S. Hayakawa, K. Tsuru and A. Osaka, “Porous Titania Films Prepared from Interactions of Titanium with Hydrogen Peroxide Solution,” Scripta Materialia, Vol. 46, No. 1, 2002, pp. 101-106. doi:10.1016/S1359-6462(01)01207-6
[13] S. Fujibayashi, M. Neo, H.-M. Kim, T. Kokubo and T. Nakamura, “Osteoinduction of Porous Bioactive Titanium Metal,” Biomaterials, Vol. 25, No. 3, 2004, pp. 443-450. doi:10.1016/S0142-9612(03)00551-9
[14] Y.-T. Sul, C. B. Johansson, Y. Jeong and T. Albrektsson, “The Electrochemical Oxide Growth Behavior on Titanium in Acid and Alkaline Electrolytes,” Medical Engineering & Physics, Vol. 23, No. 5, 2001, pp. 329-346. doi:10.1016/S1350-4533(01)00050-9
[15] B. Yang, M. Uchida, H.-M. Kim, X. Zhang and T. Kokubo, “Preparation of Bioactive Titanium Metal via Anodic Oxidation Treatment,” Biomaterials, Vol. 25, No. 6, 2004, pp. 1003-1010. doi:10.1016/S0142-9612(03)00626-4
[16] J. Takebe, S. Ito, S. Miura, K. Miyata and K. Ishibashi, “Physicochemical State of the Nanotopographic Surface of Commercially Pure Titanium Following AnodizationHydrothermal Treatment Reveals Significantly Improved Hydrophilicity and Surface Energy Profiles,” Materials Science and Engineering: C, Vol. 32, No. 1, 2012, pp. 5560. doi:10.1016/j.msec.2011.09.011
[17] A. Yamagami, Y. Yoshihara and F. Suwa, “Mechanical and Histologic Examination of Titanium Alloy Material Treated by Sandblasting and Anodic Oxidation,” The Internatinal Journal of Oral Maxillofac Implants, Vol. 20, 2005, pp. 48-53.
[18] W. J. Dawson, “Hydrothermal Synthesis of Advanced Ceramic Powder,” Journal of the American Ceramic Society Bulletin, Vol. 67, No. 10, 1988, pp. 1673-1678.
[19] H. Xu and L. Gao, “Hydrothermal Synthesis of High-Purity BaTiO3 Powders: Control of Powder Phase and Size, Sintering Density, and Dielectric Properties,” Material Letters, Vol. 58, No. 10, 2004, pp. 1582-1586. doi:10.1016/j.matlet.2003.10.030
[20] Y. V. Kolen Ko, B. R. Churagulov, M. Kunst, L. Mazerolles and C. Colbeau-Justin, “Photocatalytic Properties of Titania Powders Prepared by Hidrothermal Method,” Applied Catalysis B: Environmental, Vol. 54, No. 1, 2004, pp. 51-58. doi:10.1016/j.apcatb.2004.06.006
[21] R. Rodriguez, K. Kim and L. Joo Ong, “In Vitro Osteoblast Response to Anodized Titanium and Anodized Titanium Followed by Hydrothermal Treatment,” Journal of Biomedical Material Research, Vol. 65A, No. 3, 2003, pp. 352-358. doi:10.1002/jbm.a.10490
[22] K. L. Kilpadi, P. L. Chang and S. L. Bellis, “Hydroxylapatite Binds More Serum Proteins, Purified Integrins, and Osteoblast Precursor Cells than Titanium or Steel,” Journal of Biomedical Materials Research Part A, Vol. 57, No. 2, 2001, pp. 258-267.
[23] F. Rupp, L. Scheideler, N. Olshanska, M. De Wild, M. Wieland and J. Geis-Gerstorfer, “Enhancing Surface Free Energy and Hydrophilicity through Chemical Modification of Microstructured Titanium Implant Surfaces,” Journal of Biomedical Materials Research Part A, Vol. 76A, No. 2, 2006, pp. 323-334. doi:10.1002/jbm.a.30518
[24] K. Das, S. Bose and A. Bandyopadhyay, “Surface Modifications and Cell-Materials Interactions with Anodized Ti,” Acta Biomaterialia, Vol. 3, No. 4, 2007, pp. 573-585. doi:10.1016/j.actbio.2006.12.003
[25] M. Bigerelle, K. Anselme, B. Noel, I. Ruderman, P. Hardouin and A. Iost, “Improvement in the Morphology of Ti-Based Surfaces: A New Process to Increase in Vitro Human Osteoblast Response,” Biomaterials, Vol. 23, No. 7, 2002, pp. 1563-1577. doi:10.1016/S0142-9612(01)00271-X
[26] Y. Arima and H. Iwata, “Effect of Wettability and Surface Functional Groups on Protein Adsorption and Cell Adhesion Using Well-defined Mixed Self-assembled Monolayers,” Biomaterials, Vol. 28, No. 20, 2007, pp. 30743082. doi:10.1016/j.biomaterials.2007.03.013
[27] D. Yamamoto, I. Kawai, K. Kuroda, R. Ichino, M. Okido and A. Seki, “Osteoconductivity of Anodized Titanium with Controlled Micron-Level Surface Roughness,” Materials Transactions, Vol. 52, No. 8, 2011, pp. 1650-1654. doi:10.2320/matertrans.M2011049
[28] D. Yamamoto, T. Iida, K. Kuroda, R. Ichino M. Okido and A. Seki, “Formation of Amorphous TiO2 Film on Ti Using Anodizingin Concentrated H3PO4 Aqueous Solution and Its Osteoconductivity,” Materials Transactions, Vol. 53, No. 3, 2012, pp. 508-512. doi:10.2320/matertrans.M2011234
[29] D. Yamamoto, I. Kawai, K. Kuroda, R. Ichino M. Okido and A. Seki, “Osteoconductivity and Hydrophilicity of TiO2 Coatings on Ti Substrates Prepared by Different Oxidizing Processes,” Bioinorganic Chemistry and Applications, Vol. 2012, 2012, Article ID: 495218. doi:10.1155/2012/495218
[30] D. Yamamoto, T. Iida, K. Arii, K. Kuroda, R. Ichino M. Okido and A. Seki, “Surface Hydrophilicity and Osteoconductivity of Anodized Ti in Aqueous Solutions with Various Solute Ions,” Materials Transactions, Vol. 53, No. 11, 2012, pp. 1956-1961. doi:10.2320/matertrans.M2012082
[31] D. Yamamoto, K. Arii, K. Kuroda, R. Ichino M. Okido and A. Seki, “Osteoconductivity of Superhydropilic Anodized TiO2 Coatings on Ti Treated with Hydrothermal Processes,” Journal of Biomaterials and Nanobiotechnology, Vol. 4, No. 1, 2013, pp. 45-52. doi:10.4236/jbnb.2013.41007
[32] K. Kuroda, S. Nakamoto, Y. Miyashita, R. Ichino and M Okido, “Osteoinductivity of HAp Films with Different Surface Morphologies Coated by the Thermal Substrate Method in Aqueous Solutions,” Materials Transactions, Vol. 47, No. 5, 2006, pp. 1391-1394. doi:10.2320/matertrans.47.1391
[33] C. Y. Kramer, “Extension of Multiple Range Tests to Group Means with Unequal Numbers of Replications,” Biometrics, Vol. 12, No. 3, 1956, pp. 307-310. doi:10.2307/3001469
[34] W. Att, N. Hori, M. Takeuchi, J. Ouyang, Y. Yang, M. Anpo and T. Ogawa, “Time-Dependent Degradation of Titanium Osteoconductivity: An Implication of Biological Aging of Implant Materials,” Biomaterials, Vol. 30, No. 29, 2009, pp. 5352-5363. doi:10.1016/j.biomaterials.2009.06.040
[35] Y. Tanaka, M. Nakai, T. Akahori, et al., “Characterization of Air-Formed Surface Oxide Film on Ti-29Nb-13Ta4.6Zr Alloy Surface Using XPS and AES,” Corrosion Science, Vol. 50, No. 8, 2008, pp. 2111-2116. doi:10.1016/j.corsci.2008.06.002
[36] G. Schneider and K. Burridge, “Formation of Focal Adhesions by Osteoblasts Adhering to Different Substrata,” Experimental Cell Research, Vol. 214, No. 1, 1994, pp. 264-269. doi:10.1006/excr.1994.1257
[37] H. Yamamoto, Y. Shibata and T. Miyazaki, “Anode Glow Discharge Plasma Treatment of Titanium Plates Facilitates Adsorption of Extracellular Matrix Proteins to the Plates,” Journal of Dental Research, Vol. 84, No. 7, 2005, pp. 668-671. doi:10.1177/154405910508400717
[38] Y. Shibata, M. Hosaka, H. Kawai an T. Miyazaki, “Glow Discharge Plasma Treatment to Titanium Plates Enhances Adhesion of Osteoblast-Like Cells to the Plates through the Integrin-Mediated Mechanism,” The International Journal of Oral Maxillofac Implants, Vol. 17, No. 6, 2002, pp. 771-777.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.