Surface Modification of the Biowaste for Purification of Wastewater Contaminated with Toxic Heavy Metals—Lead and Cadmium

Abstract

The surface of a biowaste was modified by introduction of amino group for the purification of wastewater contaminated with heavy metals. In this study waste tea leaf was used as a biowaste which was an economic and efficient bioadsorbent. The aminated tea leaves were characterized by spectral and elemental analysis. The adsorption capacity of the surface modified biosorbent was studied as the function of solution pH, concentration of metal ions and contact time of adsorption. The applicability of Langmuir isotherm was tested. The adsorption capacities were found to be 83.04 mg/g and 57 mg/g for Pb (II) and Cd (II), respectively. The biosorbent was regenerated by desorption of the metal loaded adsorbent with 0.1 M HNO3. These results showed that the aminated tea leaves may be an attractive alternative for treatment of wastewater contaminated with heavy metals.

Share and Cite:

B. Shrestha, J. Kour, P. Homagai, M. Pokhrel and K. Ghimire, "Surface Modification of the Biowaste for Purification of Wastewater Contaminated with Toxic Heavy Metals—Lead and Cadmium," Advances in Chemical Engineering and Science, Vol. 3 No. 3, 2013, pp. 178-184. doi: 10.4236/aces.2013.33022.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] V. M. Nurchi and I. Villaescusa, “Agricultural Biomasses as Sorbents of Some Trace Metals,” Coordination Chemistry Review, Vol. 252, No. 10-11, 2008, pp. 1178-1188. doi:10.1016/j.ccr.2007.09.023
[2] S. Babel and T. A. Kurniawan, “Low Cost Adsorbents for Heavy Metals Uptake from Contaminated Water: A Review,” Journal of Hazardous Materials, Vol. 97, No. 1-3, 2003, pp. 219-243. doi:10.1016/S0304-3894(02)00263-7
[3] J. C. Igwe and A. A. Abia, “A Bioseparation Process for Removing Heavy Metals from Wastewater Using Biosorbents—Review,” African Journal of Biotechnology, Vol. 5, No. 12, 2006, pp. 1167-1179.
[4] B. Volesky and Z. R. Holan, “Biosorption of Heavy Metals,” Biotechnology Progress, Vol. 11, No. 3, 1995, pp. 235-250. doi:10.1021/bp00033a001
[5] N. Das, R. Vimala and P. Karthika, “Biosorption of Heavy Metals—An Overview,” Indian Journal of Biotechnology, Vol. 7, 2008, pp. 159-169.
[6] P. L. Homagai, K. N. Ghimire and K. Inoue, “Preparation and Characterization of Charred Xanthated Sugarcane Bagasse for the Separation of Heavy Metals from Aqueous Solutions,” Separation Science and Technology, Vol. 46, No. 2, 2011, pp. 330-339. doi:10.1080/01496395.2010.506903
[7] U. Kumar and M. Bandyopadhyay, “Sorption of Cadmium from Aqueous Solution Using Pretreted Rice Husk,” Bioresource Technology, Vol. 97, No. 1, 2006, pp. 104-109. doi:10.1016/j.biortech.2005.02.027
[8] G. Blazquez, F. Hernainz, M. Calero and L. F. Ruiz-Nunez, “Removal of Cadmium Ions with Olive Stone: The Effect of Some Parameters,” Process Biochemistry, Vol. 40, No. 8, 2005, pp. 2649-2654. doi:10.1016/j.procbio.2004.11.007
[9] B. K. Biswas, K. Inoue, K. N. Ghimire, H. Harada, K. Ohto and H. Kawakita, “Removal and Recovery of Phosphorus from Water by means of Adsorption onto Orange Waste Gel Loaded with Zirconium,” Bioresource Technology, Vol. 99, No. 18, 2008, pp. 8685-8690. doi:10.1016/j.biortech.2008.04.015
[10] T. A. Islam, H. A. Begum, M. A. Hossain and M. T. Rahman, “Removal of Pb(II) from Aqueous Solution by Sorption on Used Tealeaves,” Journal of Bangladesh Academy of Sciences, Vol. 33, No. 2, 2009, pp. 167-178.
[11] S. Chen, Q. Yue, B. Gao and X. Xu, “Equilibrium and Kinetic Adsorption Study of the Adsorptive Removal of Cr (VI) Using Modified Wheat Residue,” Journal of Colloid and Interface Science, Vol. 349, No. 1, 2010, pp. 256-264. doi:10.1016/j.jcis.2010.05.057
[12] K. N. Ghimire, K. Inoue, K. Ohto and T. Hayashida, “Adsorptive Separation of Metallic Pollutants onto Waste Seaweeds, Porphyra yezoensis and Ulva japonica,” Separation Science and Technology, Vol. 42, No. 9, 2007, pp. 2003-2018. doi:10.1080/15363830701313461
[13] K. Vijayarhavan, K. Palanivelu and M. Veian, “Biosorption of Copper (II) and Cobalt (II) from Aqueous Solutions by Crab Shell Particles,” Bioresource Technology, Vol. 97, No. 12, 2006, pp. 1411-1419. doi:10.1016/j.biortech.2005.07.001
[14] G. Sun and W. Shi, “Sunflower Stalks as Adsorbents for the Removal of Metal Ions from Wastewater,” Industrial & Engineering Chemistry Research, Vol. 37, No. 4, 1998, pp. 1324-1328. doi:10.1021/ie970468j
[15] K. N. Ghimire, K. Inoue, H. Yamaguchi, K. Makino and T. Miyajima, “Adsorptive Separation of Arsenate and Arsenite Anions from Aqueous Medium by Using Orange Waste,” Water Research, Vol. 37, No. 20, 2003, pp. 4945-4953. doi:10.1016/j.watres.2003.08.029
[16] S. Deng, R. Bai and J. P. Chen, “Aminated Polyacrylonitrile Fibers for Lead and Copper Removal,” Langmuir, Vol. 19, No. 12, 2003, pp. 5058-5064. doi:10.1021/la034061x
[17] S. Deng, R. Bai and J. P. Chen, “Behaviors and Mechanisms of Copper Adsorption on Hydrolysed Polyacrylonitrile Fibers,” Journal of Colloid and Interface Science, Vol. 260, No. 2, 2003, pp. 265-272. doi:10.1016/S0021-9797(02)00243-6
[18] A. H. Mahvi, D. Naghipour and F. Vaezi, “Teawaste as an Adsorbent for Heavy Metal Removal from Industrial Wastewaters,” American Journal of Applied Sciences, Vol. 2, No. 1, 2005, pp. 372-375. doi:10.3844/ajassp.2005.372.375
[19] W. S. Wan Ngah and M. A. K. M. Hanafiah, “Removal of Heavy Metal Ions from Wastewater by Chemically Modified Plant Wastes as Adsorbents: A Review,” Bioresource Technology, Vol. 99, No. 10, 2008, pp. 3935-3948. doi:10.1016/j.biortech.2007.06.011
[20] M. C. Basso, E. G. Cerrella and A. L. Cukierman, “Lignocellulosic Materials as Potential Biosorbents of Trace Toxic Metals from Wastewater,” Industrial & Engineering Chemistry Research, Vol. 41 No. 15, 2002, pp. 3580-3587. doi:10.1021/ie020023h
[21] S. Chen, Q. Yue, B. Gao and X. Xu, “Equilibrium and Kinetic Adsorption Study of the Adsorptive Removal of Cr (VI) Using Modified Wheat Residue,” Journal of Colloid and Interface Science, Vol. 349, No. 1, 2010, pp. 256-264. doi:10.1016/j.jcis.2010.05.057
[22] S. Deng and Y. P. Ting, “Fungal Biomass with Grafted Poly(acrylic acid) for Enhancement of Cu (II) and Cd (II) Biosorption,” Langmuir, Vol. 21, No. 13, 2005, pp. 5940-5948. doi:10.1021/la047349a
[23] K. J. Tiemann, G. Gamez, K. Dokken, J. G. Parsons and J. L. Gardea-Torresdey, “Chemical Modification and X-Ray Absorption Studies for Lead (II) Binding by Medicago sativa (alfalfa) Biomass,” Microchemical Journal, Vol. 71, No. 2-3, 2002, pp. 287-293. doi:10.1016/S0026-265X(02)00021-8
[24] N. Sankaramakrishnan and R. Sanghi, “Preparation and Characterization of a Novel Xanthated Chitosan,” Carbohydrate Polymers, Vol. 66, No. 2, 2006, pp. 160-167.
[25] R. L. Shriner, C. K. F. Hermann, T. C. Morill, D. Y. Curtin and R. C. Fuson, “The Systematic Identification of Organic compounds,” 7th Edition, Wiley, New York, 1998.
[26] P. Pavasant, R. Apiratikul, V. Sungkhum , P. Suthiparinyanont, S. Wattanachira and T. F. Marhaba, “Biosorption of Cu2+, Cd2+, Pb2+ and Zn2+ Using Dried Marine Green Macroalga Caulerpa Lentillifera,” Bioresource Technology, Vol. 97, No. 18, 2006, pp. 2321-2329. doi:10.1016/j.biortech.2005.10.032
[27] A. W. Krowiak, R. G. Szafran and S. Modlski, “Biosorption of Heavy Metals from Aqueous Solutions onto Peanut Shell as a Low-Cost Biosorbent,” Desalination, Vol. 265, No. 1-3, 2011, pp. 126-134. doi:10.1016/j.desal.2010.07.042
[28] R. Ayyappan, A. C. Sophia, K. Swaminathan and S. Sandhya, “Removal of Pb (II) from Aqueous Solution Using Carbon Derived from Agricultural Wastes,” Process Biochemistry, Vol. 40, No. 3-4, 2005, pp. 293-1299. doi:10.1016/j.procbio.2004.05.007
[29] P. Miretzky, C. Munoz and A. C. Chavez, “Experimental Binding of Lead to a Low Cost Biosorbent: Nopal (Opuntia streptacantha),” Bioresource Technology, Vol. 99, No. 5, 2008, pp. 1211-1217. doi:10.1016/j.biortech.2007.02.045
[30] Y. S. Ho and G. McKay, “Pseudo-Second Order Model for Sorption Processes,” Process Biochemistry, Vol. 34, No. 5, 1999, pp. 451-465. doi:10.1016/S0032-9592(98)00112-5
[31] D. Wankasi, J. M. Horsfall and A. I. Spiff, “Sorption Kinetics of Pb2+ and Cu2+ Ions from Aqueous Solution by Nipah palm (Nypa fruticans Wurmb) Shoot Biomass,” Electronic Journal of Biotechnology, Vol. 9, No. 5, 2006, pp. 587-592. doi:10.2225/vol9-issue5-fulltext-5

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.