pH-responsive magnesium- and carbonate-substituted apatite nano-crystals for efficient and cell-targeted delivery of transgenes

DOI: 10.4236/ojgen.2013.32A1005   PDF   HTML   XML   3,748 Downloads   5,801 Views   Citations


The short half-lives due to the enzymatic degradation in blood, the lack of tissue targetability and the incapability to passively diffuse across the plasma membrane and smoothly traffic across the harsh intracelluar environment are the major shortcomings for nucleic acid-based potential therapeutics, such as recombinant plasmid and antisense oligonucleotides or small interferring RNA (siRNA). Plasmid DNA containing a gene of interest could have immense impact as a promising therapeutic drug for treating genetic as well as acquired human diseases at the molecular level with high level of efficacy and precision. Thus both viral and non-viral synthetic vectors have been developed in the past decades to address the aforementioned challenges of naked DNA. While in the viral particles plasmid DNA is integrated into the viral genome, in most non-viral cases the DNA being anionic in nature is electrostatically associated with a cationic lipid or polymer forming lipoplex or polyplex, respectively, or a cationized inorganic gold, silica or iron oxide particle. Due to the potential immunogenicity and carcinogenicity issues with the viral particles, non-viral vectors have drawn much more attention for the clinical evaluation. However, the main concern of using non-biodegradable particles, specially the inorganic ones, is the adverse effects owing to their long term interactions with body components. We have recently developed biodegradable pH-sensitive inorganic nanoparticles of Mg/CaPi and carbonate apatite for efficient transgene delivery to primary, cancer and embryonic stem cells, by virtue of their high affinity binding with the DNA, ability to contact the cell membrane by ionic or ligand-receptor interactions and fast dissolution kinectis in endosomal acidic pH facilitating release of the DNA from the dissolving particles and also from the endosomes.

Share and Cite:

Chowdhury, E. (2013) pH-responsive magnesium- and carbonate-substituted apatite nano-crystals for efficient and cell-targeted delivery of transgenes. Open Journal of Genetics, 3, 38-44. doi: 10.4236/ojgen.2013.32A1005.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] [1] Chowdhury, E.H. and Akaike, T. (2005) Advances in fabrication of calcium phosphate nano-composites for Smart Delivery of DNA and RNA to mammalian cells. Current Analytical Chemistry, 2, 187-192. doi:10.2174/1573411054021592
[2] Chowdhury, E.H. and Akaike, T. (2005) Bio-functional inorganic materials: An attractive branch of gene-based nano-medicine delivery for 21st century. Current Gene Therapy, 5, 669-676. doi:10.2174/156652305774964613
[3] Chowdhury, E.H., Kutsuzawa, K. and Akaike, T. (2005) Designing Smart nano-apatite Composites: The Emerging era of non-viral gene delivery. Gene Therapy & Molecular Biology, 9, 301-316.
[4] Chowdhury, E.H. (2007) pH-sensitive nano-crystals of carbonate apatite for smart and cell-specific transgene delivery. Expert Opinion on Drug Delivery, 4, 193-196. doi:10.1517/17425247.4.3.193
[5] Chowdhury, E.H. (2009) Nuclear targeting of viral and non-viral DNA. Expert Opinion on Drug Delivery, 6, 697-703. doi:10.1517/17425240903025744
[6] Chowdhury, E.H. and Akaike, T. (2005) Integrin-targeted gene delivery: A common approach for advanced viral and non-viral vectors. Gene Therapy & Molecular Biology, 9, 431-444.
[7] Chowdhury, E.H. and Akaike, T. (2007) pH-sensitive inorganic nano-particles and their precise cell targetbility: An efficient gene delivery and expression system. Current Chemical Biology, 1, 201-213.
[8] Chowdhury, E.H. (2008) Self-assembly of DNA and celladhesive proteins onto pH-sensitive inorganic crystals for precise and efficient transgene delivery. Current Pharmaceutical Design, 14, 2212-2228. doi:10.2174/138161208785740207
[9] Chowdhury, E.H. (2011) Strategies for tumor-directed delivery of siRNA. Expert Opinion on Drug Delivery, 8, 389-401. doi:10.1517/17425247.2011.554817
[10] Chowdhury, E.H. and Akaike, T. (2005) A Bio-recognition device developed onto nano-crystals of carbonate apatite for cell-targeted gene delivery. Biotechnology and Bioengineering, 90, 414-421. doi:10.1002/bit.20398
[11] Graham, F.L. and van der Eb, A.J. (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology, 52, 456-467. doi:10.1016/0042-6822(73)90341-3
[12] Batard, P., Jordan, M. and Wurm, F. (2001) Transfer of high copy number plasmid into mammalian cells by calcium phosphate transfection. Gene, 270, 61-68. doi:10.1016/S0378-1119(01)00467-X
[13] Chowdhury, E.H., Kunou, M., Nagaoka, M., Kundu, A.K., Hoshiba, T. and Akaike, T. (2004) High-efficiency gene delivery for expression in mammalian cells by nanoprecipitates of Ca-Mg phosphate. Gene, 341, 77-82. doi:10.1016/j.gene.2004.07.015
[14] Okazaki, M., Yoshida, Y., Yamaguchi, S., Kaneno, M. and Elliott J.C. (2001) Affinity binding phenomena of DNA onto apatite crystals. Biomaterials, 22, 2459-2464. doi:10.1016/S0142-9612(00)00433-6
[15] Hasan, M.T., Subbaroyan, R. and Chang, T.Y. (1991) Highefficiency stable gene transfection using chloroquinetreated Chinese hamster ovary cells. Somatic Cell and Molecular Genetics, 17, 513-517. doi:10.1007/BF01233175
[16] Luthman, H. and Magnusson, G. (1983) High efficiency polyoma DNA transfection of chloroquine treated cells. Nucleic Acids Research, 11, 1295-1308. doi:10.1093/nar/11.5.1295
[17] Jordan, M., Schallhorn, A. and Wurm, F.M. (1996) Transfecting mammalian cells: Optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Research, 24, 596-601. doi:10.1093/nar/24.4.596
[18] Chowdhury, E.H., Sasagawa, T., Nagaoka, M., Kundu, A. K. and Akaike, T. (2003) Transfecting mammalian cells by DNA/calcium phosphate precipitates: Effect of temperature and pH on precipitation. Analytical Biochemistry, 314, 316-318. doi:10.1016/S0003-2697(02)00648-6
[19] Chowdhury, E.H., Megumi, K., Harada, I., Kundu, A.K. and Akaike, T. (2004) Dramatic effect of Mg(2+) on tranfecting mammalian cells by DNA/calcium phosphate precipitates. Analytical Biochemistry, 328, 96-97. doi:10.1016/j.ab.2004.01.009
[20] Chowdhury, E.H., Maruyama, A., Nagaoka, M., Hirose, S., Megumi, K. and Akaike, T. (2006) pH-sensing nanocrystals of carbonate apatite: Effects on intracellular delivery and release of DNA for efficient expression into mammalian cells. Gene, 376, 87-94. doi:10.1016/j.gene.2006.02.028
[21] Chowdhury, E.H. and Akaike, T. (2007) High performance DNA nano-carriers of carbonate apatite: Multiple factors in regulation of particle synthesis and transfection efficiency. International Journal of Nanomedicine, 2, 101-106. doi:10.2147/nano.2007.2.1.101
[22] Chowdhury, E.H., Nagaoka, M., Ogiwara, K., Zohra, F.T., Kutsuzawa, K., Tada, S., Kitamura, C. and Akaike, T. (2005) Integrin-supported fast rate intracellular delivery of plasmid DNA by ECM protein embedded-calcium phosphate complexes. Biochemistry (USA), 44, 12273-12278. doi:10.1021/bi050595g
[23] Chowdhury, E.H. and T. Akaike. (2006) Fibronectin-coated nano-precipitates of calcium-magnesium phosphate for integrin-targeted gene delivery. Journal of Controlled Release, 116, 68-69. doi:10.1016/j.jconrel.2006.09.054
[24] Kutsuzawa, K., Chowdhury, E.H., Nagaoka, M., Maruyama, K., Akiyama, Y. and Akaike T. (2006) Surface functionalization of inorganic nano-crystals with fibronectin and E-cadherin chimera synergistically accelerate transgene delivery into embryonic stem cells. Biochemical and Biophysical Research Communications (BBRC), 350, 514-520. doi:10.1016/j.bbrc.2006.09.081
[25] Kutsuzawa, K., Maruyama, K., Akiyama, T., Akaike, T. and Chowdhury, E.H. (2008) Efficient transfection of mouse embryonic stem cells with cell-adhesive protein-embedded inorganic nano-carrier. Analytical Biochemistry, 372, 122-124. doi:10.1016/j.ab.2007.06.033
[26] Kutsuzawa, K., Akaike, T. and Chowdhury, E.H. (2008) The influence of the cell adhesive proteins E-cadherin and fibronectin embedded in carbonate-apatite DNA carrier on transgene delivery and expression in a mouse embryonic stem cell line. Biomaterials, 29, 370-376. doi:10.1016/j.biomaterials.2007.09.011
[27] Kutsuzawa, K., Maruyama, K., Akiyama, T., Akaike, T. and Chowdhury, E.H. (2007) Protein kinase C activation enhances transfection efficacy of cell-adhesive proteinanchored carbonate apatite nano-crystals. Analytical Biochemistry, 371, 116-117. doi:10.1016/j.ab.2007.05.029
[28] Kutsuzawa, K., Tada, S., Hossain, S., Fukuda, K., Maruyama, K., Akiyama, Y., Akaike, T. and Chowdhury, E.H. (2009) Disrupting actin filaments promote efficient transfection of a leukemia cell line using cell adhesive protein-embedded carbonate apatite particles. Analytical Biochemistry, 388, 164-166. doi:10.1016/j.ab.2009.02.006

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.