The Spin-Charge-Family Theory Is Explaining the Origin of Families, of the Higgs and the Yukawa Couplings

Abstract

The (extremely efficient) standard model of the elementary particles and fields makes several assumptions, which call for explanations. Any theory offering next step beyond the standard model must explain at least the existence and properties of families and their members and correspondingly the existence of the scalar Higgs and the Yukawa couplings, which in this model take care of masses of fermions and weak bosons and influence the decaying properties of families. The spin-charge-family theory [1-11] is offering a possible explanation for the assumptions of the standard model—for the appearance of families and their members (for the charges of a family members), for the gauge fields, for the scalar fields—interpreting the standard model as its low energy effective manifestation. The spin-charge-family theory predicts at the low energy regime two decoupled groups of four families of quarks and leptons. The predicted fourth family waits to be observed, while the stable fifth family is the candidate to form the dark matter. In this paper properties of families are analysed. The appearance of several scalar fields, all in the bosonic (adjoint) representations with respect to the family groups, while they are doublets with respect to the weak charge, is presented, their properties discussed, it is explained how these scalar fields can effectively be interpreted as the standard model Higgs and the Yukawa couplings. The spin-charge-family theory predicts that there are no supersymmetric partners of the observed fermions and bosons.

Share and Cite:

N. Borštnik, "The Spin-Charge-Family Theory Is Explaining the Origin of Families, of the Higgs and the Yukawa Couplings," Journal of Modern Physics, Vol. 4 No. 6, 2013, pp. 823-847. doi: 10.4236/jmp.2013.46113.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] N. S. Mankoc Borstnik, Physics Letters B, Vol. 292, 1992, pp. 25-29.
[2] N. S. Mankoc Borstnik, Journal of Mathematical Physics, Vol. 34, 1993, pp. 3731-3745.
[3] N. S. Mankoc Borstnik, International Journal of Theoretical Physics, Vol. 40, 2001, pp. 315-338.
[4] N. S. Mankoc Borstnik, Modern Physics Letters A, Vol. 10, 1995, pp. 587-595.
[5] N. S. Mankoc Borstnik, World Scientific, Proceedings of the 13th Lomonosov Conference on Elementary Physics Particle Physics in the EVE of LHC, Moscow State University, Moscow, 3 -29 August, 2007, pp. 371-378.
[6] N. S. Mankoc Borstnik, Proceedings to the 10th International Workshop “What Comes Beyond the Standard Models”, Bled, 17-27 July, 2007, pp. 94-113. arXiv:0711.4681.
[7] N. S. Mankoc Borstnik, Proceedings to the 5th International Conference on Beyond the Standard Models of Particle Physics, Cosmology and Astrophysics, Cape Town, 1-6 February, 2010, pp. 543-553. arXiv:1005.2288.
[8] A. Borstnik and N. S. Mankoc Borstnik, Physical Review D, Vol. 74, 2006, Article ID: 0703013. doi:10.1103/PhysRevD.74.073013
[9] N. S. Mankoc Borstnik, “The Spin-Charge-Family Theory Is Explaining the Origin of Families, of the Higgs and the Yukawa Couplings,” Proceedings to the 14th International Workshop “What comes beyond the standard models”, Bled, 11-21 July, 2011, pp. 112-148. http://viavca.in2p3.fr/what_comes_beyond_the_standard_models_xiv.html
[10] G. Bregar, M. Breskvar, D. Lukman and N. S. Mankoc Borstnik, New Journal of Physics, Vol. 10, 2008, pp. 53-70.
[11] G. Bregar and N. S. Mankoc Borstnik, Physical Review D, Vol. 80, 2009, pp. 1-16.
[12] R. Jackiw and K. Johnson, Physical Review D, Vol. 8, 1973, pp. 2386-2398. doi:10.1103/PhysRevD.8.2386
[13] S. Weinberg, Physical Review D, Vol. 19, 1979, pp. 1277-1280. S. Dimopoulos and L. Susskind, Nuclear Physics B, Vol. 155, 1979, pp. 237-252.
[14] T. Appelquist and J. Terning, Physics Review D, Vol. 50, 1994, pp. 2116-2126. doi:10.1103/PhysRevD.50.2116
[15] P. Q. Hung, Physical Review Letters, Vol. 80, 1998, pp. 3000-3003. P. H. Frampton, P. Q. Hung and M. Sher, Physics Report, Vol. 330, 2000, pp. 263-348.
[16] S. J. Huber, C. A. Lee and Q. Shafi, Physics Letters B, Vol. 531, 2002, pp. 112-118. doi:10.1016/S0370-2693(02)01368-0
[17] A. J. Buras, B. Duling and T. Feldmann, Journal of High Energy Physics, Vol. 9, 2010, pp. 106-176.
[18] Y. A. Simonov, Physics of Atomic Nuclei, Vol. 74, 2011, pp. 643-649.
[19] T. A. Ryttov and R. Shrock, Physical Review D, Vol. 81, 2010, pp. 1-21.
[20] Z. Kakushadze and S. H. H. Tye, Physical Review Letters, Vol. 77, 1996, pp. 2612-2615.
[21] H. C. Lee, “An Introduction to Kaluza-Klein Theories,” World Scientific, Singapore, 1983.
[22] “Modern Kaluza-Klein Theories,” In: T. Appelquist, A. Chodos and P. G. O. Freund, Eds., Reading, Addison Wesley, Boston, 1987.
[23] R. S. Chivukula and H. Georgi, Physics Letters B, Vol. 188, 1987, pp. 99-104. doi:10.1016/0370-2693(87)90713-1
[24] G. D. Ambrosio, G. Giudice, G. Isidori and A. Strumia, Nuclear Physics B, Vol. 645, 2002, pp. 155-187. doi:10.1016/S0550-3213(02)00836-2
[25] R. D. Peccei and H. R. Quinn, Physical Review D, Vol. 16, 1977, pp. 1791-1797. doi:10.1103/PhysRevD.16.1791
[26] R. Alonso, M. B. Gavela, L. Merlo and S. Rigolin, Journal of High Energy Physics, Vol. 7, 2011, pp. 1-32.
[27] C. D. Froggatt and H. B. Nielsen, Nuclear Physics B, Vol. 147, 1979, pp. 277-298. doi:10.1016/0550-3213(79)90316-X
[28] A. Borstnik Bracic and N. S. Mankoc Borstnik, “The approach Unifying Spins and Charges and Its Predictions,” Proceedings to the Euroconference on Symmetries Beyond the Standard Model, Portoroz, 12-17 July, 2003, pp. 31-57.
[29] N. S. Mankoc Borstnik and H. B. Nielsen, Physics Letters B, Vol. 633, 2006, pp. 771-775. Physics Letters B, Vol. 644, 2007, pp. 198-202. Physics Letters B, Vol. 663, 2008, pp. 265-269. Physics Letters B, Vol. 486, 2000, pp. 314-321.
[30] D. Lukman, N. S. Mankoc Borstnik and H. B. Nielsen, New Journal of Physics, Vol. 13, 2011, pp. 1-25, http://arxiv.org/abs/1001.4679.
[31] E. Witten, Nuclear Physics B, Vol. 186, 1981, pp. 412-428. “Fermion Quantum Numbers in Kaluza-Klein Theories,” Princeton Technical Report, Institute for Advanced Studies, Princeton, 1983.
[32] N. S. Mankoc Borstnik, Journal of Mathematical Physics, Vol. 34, 1993, pp. 3731-3745. N. S. Mankoc Borstnik and H. B. Nielsen, Journal of Mathematical Physics, Vol. 43, 2002, pp. 5782-5803. Journal of Mathematical Physics, Vol. 44, 2003, pp. 4817-4827.
[33] A. Hernández-Galeana and N. S. Mankoc Borstnik, “Masses and Mixing Matrices of Families of Quarks and Leptons Within the Spin-Charge-Family-Theory Beyond the Tree Level,” Proceedings to the 13th workshop What Comes Beyond the Standard Models, Bled, 13-23 July, 2010, pp. 166-176.
[34] G. Bregar and N. S. Mankoc Borstnik, “How Similar Are Properties of Mass Matrices of Quarks to Those of Leptons?” Paper in Preparation.
[35] J. Beringer, et al. (Particle Data Group), Physical Review D, Vol. 86, 2012, Article ID: 010001.
[36] V. A. Novikov, L. B. Okun, A. N. Rozanov and M. I. Vysotsky, Physics Letter B, Vol. 529, 2002, pp. 111-116. M. Maltoni, V. A. Novikov, L. B. Okun, A. N. Rozanov and M. I. Vysotsky, Physics Letter B, Vol. 476, 2000, pp. 107-115.
[37] N. S. Mankoc Borstnik, “Do we Have the Explanation for the Higgs and Yukawa Couplings of the Standard Model,” http://arxiv.org/abs/1212.3184v2

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.