Numerical Study on Optical Solitons Transmission System with 40 Gbit/s in the Photonic Crystal Fiber

Abstract

The 40 Gbit/s optical solitons transmission system in photonic crystal fiber was investigated by fast Fourier transform method, and the maximum transmission distance of system was calculated numerically. By the eye pattern of system, the transmission performances of system were studied. Results show that when polarization mode dispersion coefficient Dp is smaller than , the influence of the PMD on the transmission distance was neglectable. When the dispersion coefficient D is larger than 1.5 ps/km/nm, the transmission distance decreases rapidly. The positive or negative of three order group-velocity dispersion makes no differences on the system transmission.

Share and Cite:

J. Wang, S. Wang, X. Chu and M. Sun, "Numerical Study on Optical Solitons Transmission System with 40 Gbit/s in the Photonic Crystal Fiber," Optics and Photonics Journal, Vol. 3 No. 2, 2013, pp. 141-146. doi: 10.4236/opj.2013.32023.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] N. Nishizawa, Y. Ito and T. Goto, “0.78 0.90-μm Wave length-Tunable Femtosecond Soliton Pulse Generation Using Photonic Crystal Fiber,” IEEE Photonics Technology Letters, Vol. 14, No. 7, 2002, pp. 986-988. doi:10.1109/LPT.2002.1012407
[2] F. Luan, J. C. Knight, et al., “Femtosecond Soliton Pulse Delivery at 800 nm Wavelength in Hollow-Core Photonic Bandgap Fibers,” Optics Express, Vol. 12, No. 5, 2004, pp. 835-840. doi:10.1364/OPEX.12.000835
[3] W. Gobel, A. Nimmerjahn, F. Helmchem, et al., “Distor tion-Free Delivery of Nanojoule Femtosecond Pulses from a Ti:Sapphire Laser through a Hollow-Core Photonic Crystal Fiber,” Optics Letters, Vol. 29, No. 11, 2004, pp. 1285-1287. doi:10.1364/OL.29.001285
[4] K. L. Duan, J. M. Wang, J. F. Li, et al., “Experimental Study of Phase-Locking of Two Photonic Crystal Fiber Lasers,” Optics Communications, Vol. 281, No. 9, 2008, pp. 2557-2560. doi:10.1016/j.optcom.2007.12.086
[5] G. Bonati, H. Voelckel, T. Gabler, et al., “Photonics West,” Late Breaking Developments, San Jose, 2005.
[6] R. Cherif, M. Zghal, L. Tartara and V. Degiorgio, “Su percontinuum Generation by Higher-Order Mode Excitation in a Photonic Crystal Fiber,” Optics Express, Vol. 16, No. 3, 2008, pp. 2147-2152. doi:10.1364/OE.16.002147
[7] A. S. Y. Hsieh, S. G. Murdoch, S. Coen, et al., “Influence of Raman Susceptibility on Optical Parametric Amplification in Optical Fibers,” Optics Letters, Vol. 32, No. 5, 2007, pp. 521-523. doi:10.1364/OL.32.000521
[8] S. Wabnitz, “Broadband Parametric Amplification in Pho tonic Crystal Fibers with Two Zero-Dispersion Wave lengths,” Journal of Lightwave Technology, Vol. 24, No. 4, 2006, pp. 1732-1739. doi:10.1109/JLT.2006.871068
[9] W.-H. Liu, X.-Z. Song, Y.-S. Wang, et al., “Experimental Research of Supercontinuum Generation by Femtosecond Pulse in Highly Nonlinear Photonic Crystal Fiber,” Acta Physica Sinica, Vol. 57, No. 2, 2008, pp. 917-922.
[10] P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, et al., “Highly Nonlinear and Anomalously Dispersive Lead Silicate Glass Holey Fibers,” Optics Express, Vol. 11, No. 26, 2003, pp. 3668-3673. doi:10.1364/OE.11.003568
[11] H. Hasegawa, Y. Oikawa and M. Nakazawa, “10 Gbit/s 2 km Photonic Crystal Fiber Transmission over 850 nm with a Directly Modulated Single-Mode VCSEL H,” IEEE Electronics Letters, Vol. 43, No. 2, 2007, pp. 119-121.
[12] Y. Xu, X. Ren, Z. Wang, X. Zhang and Y. Huang, “Flatly Broadened Supercontinuum Generation at 10 Gbit/s Using Dispersion-Flattened Photonic Crystal Fibre with Small Normal Dispersion,” IEEE Electronics Letters, Vol. 43, No. 2, 2007, pp. 87-88. doi:10.1049/el:20073303
[13] C. H. Kwok, S. H. Lee, K. K. Chow, et al., “Photonic Crystal Fiber Based All-Optical Modulation Format Con versions between NRZ and RZ with Hybrid Clock Recovery from a PRZ Signal,” Opt-Eleetronics, Vol. 1, No. 1, 2007, pp. 47-53.
[14] D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkata raman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch and A. L. Gaeta, “Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers,” Science, Vol. 301, No. 5640, 2003, pp. 1702-1704. doi:10.1126/science.1088387
[15] M. Ballav and A. R. Chowdhury, “Raman Perturbation and Surface Core Soliton in Hollow Photonic Crystal Fiber,” Physics Letters A, Vol. 372, No. 14, 2008, pp. 2391-2399. doi:10.1016/j.physleta.2007.11.052
[16] J. Atai, B. A. Malomed and I. M. Merhasin, “Stability and Collisions of Gap Solitons in a Model of a Hollow Optical Fiber,” Optics Communications, Vol. 265, No. 1, 2006, pp. 342-348. doi:10.1016/j.optcom.2006.03.037
[17] M. Matsumoto, Y. Akagi and A. Hasegawa, “Propagation of Solitons in Fibers with Randomly Varying Birefringence: Effects of Soliton Transmission Control,” Journal of Lightwave Technology, Vol. 15, No. 4, 1997, pp. 584-589. doi:10.1109/50.566679

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.