Glycerol-Based Carbon-SO3H Catalyzed Benign Synthetic Protocol for the Acetylation of Alcohols, Phenols and Amines under Solvent-Free Conditions

Abstract

A simple and efficient solvent-free method was developed for the acetylation of alcohols, phenols and amines in excellent yields employing glycerol-based sulfonic acid (-SO3H) functionalized carbon catalyst under environmentally benign reaction conditions. The salient features of this protocol are the short reaction time, ease of product isolation and reusability of the carbon catalyst.

Share and Cite:

K. Gangadhar, M. Vijay, R. Prasad and B. Devi, "Glycerol-Based Carbon-SO3H Catalyzed Benign Synthetic Protocol for the Acetylation of Alcohols, Phenols and Amines under Solvent-Free Conditions," Green and Sustainable Chemistry, Vol. 3 No. 2, 2013, pp. 122-128. doi: 10.4236/gsc.2013.32014.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] P. A. Grieco, “Organic Synthesis in Water,” Blackie Academic and Professional, London, 1998.
[2] C. J. Li and T. H. Chan, “Organic Reactions in Aqueous Media,” John Wiley and Sons, New York, 1997.
[3] U. M. Lindstorm, “Stereoselective Organic Reactions in Water,” Chemical Reviews, Vol. 102, No. 8, 2002, pp. 2751-2772. doi:10.1021/cr010122p
[4] S. Kobayashi and K. Manabe, “Development of Novel Lewis Acid Catalysts for Selective Organic Reactions in Aqueous Media,” Accounts of Chemical Research, Vol. 35, No. 4, 2002, pp. 209-217. doi:10.1021/ar000145a
[5] A. E. C. Collis and I. T. Horvàth, “Heterogenization of Homogeneous Catalytic Systems,” Catalysis Science & Technology, Vol. 1, No. 6, 2011, pp. 912-919. doi:10.1039/c1cy00174d
[6] D. Choudhary, S. Paul, R. Gupta and J. H. Clark, “Catalytic Properties of Several Palladium Complexes Covalently Anchored onto Silica for the Aerobic Oxidation of Alcohols,” Green Chemistry, Vol. 8, No. 5, 2006, pp. 479-482. doi:10.1039/b601363e
[7] Z. Li, X. Ma, J. Liu, X. Feng, G. Tian and A. Zhu, “Silica-Supported Aluminum Chloride: A Recyclable and Reusable Catalyst for One-Pot Three-Component Mannich-Type Reactions,” Journal of Molecular Catalysis A: Chemical, Vol. 272, No. 1-2, 2007, pp. 132-135. doi:10.1016/j.molcata.2007.03.029
[8] B. Karimi and M. Ghoreishi-Nezhad, “Highly Chemise-lective Acetalization of Carbonyl Compounds Catalyzed by a Novel Recyclable Ammonium Triflate Functionalized Silica,” Journal of Molecular Catalysis A: Chemcal, Vol. 277, No. 1-2, 2007, pp. 262-265. doi:10.1016/j.molcata.2007.08.001
[9] J. A. Melero, R. G. Van Grieken and G. Morales, “Advances in the Synthesis and Catalytic Applications of Organosulfonic Functionalized Mesostructured Materials,” Chemical Reviews, Vol. 106, No. 9, 2006, pp. 3790-3812. doi:10.1021/cr050994h
[10] K. Niknam, B. Karami and M. A. Zolfigol, “Silica Sulfuric Acid Promoted Aromatization of 1,2-Dihydroquinolines by Using NaNO2 as Oxidizing Agent under Mild and Heterogeneous Conditions,” Catalysis Communication, Vol. 8, No. 9, 2007, pp. 1427-1430. doi:10.1016/j.catcom.2006.12.011
[11] K. Niknam, D. Saberi and M. Nouri Sefat, “Silica-Bonded S-Sulfonic Acid as a Recyclable Catalyst for Chemo Selective Synthesis of 1,1-Diacetates,” Tetrahedron Letters, Vol. 50, No. 28, 2009, pp. 4058-4062. doi:10.1016/j.tetlet.2009.04.096
[12] K. Niknam, D. Saberi and M. Mohagheghnejad, “Silica Bonded S-Sulfonic Acid: A Recyclable Catalyst for the Synthesis of Quinoxalines at Room Temperature,” Molecules, Vol. 14, 2009, pp. 1915-1926. doi:10.3390/molecules14051915
[13] F. Rashedian, D. Saberi and K. Niknam, “Silica-Bonded N-Propyl Sulfamic Acid: A Recyclable Catalyst for the Synthesis of 1,8-Dioxodecahydroacridines, 1,8-Dioxooctahydroxanthenes and Quinoxalines,” Journal of Chinese Chemical Society, Vol. 57, 2010, pp. 998-1006.
[14] T. W. Green and P. G. M. Wuts, “Protective Groups in Organic Synthesis,” 4th Edition, John Wiley and Sons, New York, 2007, p. 223.
[15] A. L. Pearson and W. J. Roush, “Reagents for Organic Synthesis: Activating Agents and Protecting Groups,” John Wiley, Hoboken, 1999, p. 9.
[16] W. Steglich and G. Hofle, “N,N-Dimethyl-l-pyridine Amine, A Very Effective Acylation Catalyst,” Angewandte Chemie International Edition England, Vol. 8, No. 12, 1969, p. 981.
[17] D. Horton, “Organic Syntheses Collection,” John Wiley and Sons, New York, Vol. 5, 1973, p. 1.
[18] R. I. Zhdanov and S. M. Zhenodarova, “Chemical Methods of Oligonucleotide Snthesis,” Synthesis, Vol. 4, 1975, pp. 222-245. doi:10.1055/s-1975-23714
[19] G. Hofle, W. Steglich and H. Vorbruggen, “4-Dialkylaminopyridines as Highly Active Acylation Catysts,” Angewandte Chemie International Edition England, Vol. 17, No. 8, 1978, pp. 569-583. doi:10.1002/anie.197805691
[20] M. G. Nascimento, S. P. Zanotto, M. Scremin and M. C. Rezende, “Carboxylic Acid Supported on Silica: A Smooth Acylation Agent for Alcohols,” Synthetic Communications, Vol. 26, No. 14, 1996, pp. 2715-2721. doi:10.1080/00397919608004588
[21] F. Shirini, M. A. Zolfigol and K. Mohammadi, “Silica Sulfuric Acid as a Mild and Efficient Reagent for the Acetylation of Alcohols in Solution and under Solvent Free Conditions,” Bulletin of Korean Chemical Society, Vol. 25, No. 2, 2004, pp. 325-327. doi:10.5012/bkcs.2004.25.2.325
[22] H. S. Prasad, G. R. Srinivasa and D. C. Gowda, “Convenient, Cost-Effective, and Mild Method for the N-Acetylation of Anilines and Secondary Amines,” Synthetic Communications, Vol. 35, No. 9, 2005, pp. 1189-1195. doi:10.1081/SCC-200054764
[23] M. A. Pasha, M. B. M. Reddy and K. Manjula, “Zinc Dust: An Extremely Active and Reusable Catalyst in Acylation of Phenols, Thiophenol, Amines and Alcohols in a Solvent-Free System,” European Journal of Chemistry, Vol. 1, No. 4, 2010, pp. 385-387. doi:10.5155/eurjchem.1.4.385-387.90
[24] R. Gupta, V. Kumar, M. Gupta, S. Paul and R. Gupta, “Silica Supported Zinc Chloride Acetylation of Amines, Alcohols and Phenols,” Indian Journal of Chemistry, Vol. 47B, 2008, pp. 1739-1743.
[25] J. Iqbal and R. R. Srivastava, “Cobalt (II) Chloride Catalyzed Acylation of Alcohols with Acetic Anhydride: Scope and Mechanism,” Journal of Organic Chemistry, Vol. 57, No. 7, 1992, pp. 2001-2007. doi:10.1021/jo00033a020
[26] K. Ishihara, M. Kubota, H. Kurihara and H. Yamamoto, “Scandium Trifluoromethanesulfonate as an Extremely Active Acylation Catalyst,” Journal of American Chemical Society, Vol. 117, No. 15, 1995, pp. 4413-4414. doi:10.1021/ja00120a030
[27] S. Chandrasekhar, T. Ramachander and M. Takhi, “Acylation of Alcohols with Acetic Anhydride Catalyzed by TaCl5: Some Implications in Kinetic Resolution,” Tetrahedron Letters, Vol. 39, No. 20, 1998, pp. 3263-3266. doi:10.1016/S0040-4039(98)00465-1
[28] T. Li and A. Li, “Montmorillonite Clay Catalysis. Part 10.1 K-10 and KSF-Catalysed Acylation of Alcohols, Phenols, Thiols and Amines: Scope and Limitation,” Journal of Chemical Society, Perkin Transactions 1, No. 12, 1998, pp. 1913-1917.
[29] R. Ballini, G. Bosica, S. Carloni, L. Ciaralli, R. Maggi and G. Sartori, “Zeolite HSZ-360 as a New Reusable Catalyst for the Direct Acetylation of Alcohols and Phenols under Solvent less Conditions,” Tetrahedron Letters, Vol. 39, No. 33, 1998, pp. 6049-6052. doi:10.1016/S0040-4039(98)01244-1
[30] K. K. Chauhan, C. G. Frost, I. Love and D. Waite, “Indium Triflate: An Efficient Catalyst for Acylation Reactions,” Synlett, No. 11, 1999, pp. 1743-1744. doi:10.1055/s-1999-2941
[31] P. Saravanan and V. K. Singh, “An Efficient Method for Acylation Reactions,” Tetrahedron Letters, Vol. 40, No. 13, 1999, pp. 2611-2614. doi:10.1016/S0040-4039(99)00229-4
[32] P. Kumar, R. K. Pandey, M. S. Bodas, S. P. Dagade, M. K. Dongare and A. V. Ramaswamy, “Acylation of Alcohols, Thiols and Amines with Carboxylic Acids Catalyzed by Yttria-Zirconia-Based Lewis Acid,” Journal of Molecular Catalysis A: Chemical, Vol. 181, No. 1-2, 2002, pp. 207-213. doi:10.1016/S1381-1169(01)00365-X
[33] V. R. Choudhary, K. Y. Patil and S. K. Jana, “Acylation of Aromatic Alcohols and Phenols over Incl3/Montmorillonite K-10 Catalysts,” Journal of Chemical Sciences, Vol. 116, No. 3, 2004, pp. 175-177. doi:10.1007/BF02708222
[34] M. S. Niasari, S. Hydarzadeh, A. Amiri and S. Salavati, “Manganese(III) bis(2-hydroxyanil) Acetyl Acetonato Complex as Effective Catalyst for Acylation of Alcohols, Amines and Phenols with Acetic Anhydride,” Journal of Molecular Catalysis A: Chemical, Vol. 231, No. 1-2, 2005, pp. 191-195. doi:10.1016/j.molcata.2005.01.013
[35] Y. Zhao, L. B. Liu, Z. Chen, T. S. Li and T. S. Jin, “Rapid and Efficient Method for Acetylation of Alcohols and Phenols with Acetic Anhydride Catalyzed by Silica Sulfate,” Synthetic Communications, Vol. 36, 2006, pp. 1221-1227. doi:10.1080/00397910500514295
[36] Z. Duan, Y. Gu and Y. Deng, “Neutral Ionic Liquid [Bmim] BF4 Promoted Highly Selective Esterification of Tertiary Alcohols by Acetic Anhydride,” Journal of Molecular Catalysis A: Chemical, Vol. 246, No. 1-2, 2006, pp. 70-75. doi:10.1016/j.molcata.2005.10.017
[37] M. A. Zolfigol, A. Khazaei, A. G. Choghamarani, A. Rostami and M. Hajjami, “Acylation of Alcohols Catalyzed by Using 1,3-Dibromo-5,5-Dimethyl Hydentoin or Trichloroisocyanuric Acid,” Catalysis Communications, Vol. 7, No. 6, 2006, pp. 399-402. doi:10.1016/j.catcom.2005.12.004
[38] G. P. Romanelli, D. Bennardi, J. Autino, G. Baronetti and H. Thomas, “A Simple and Mild Acylation of Alcohols, Phenols, Amines, and Thiols with a Reusable Heteropoly Acid Catalyst (H6P2W18O62.24H2O),” European Journal of Chemistry, Vol. 5, 2008, pp. 641-647.
[39] B. Akhlaghinia and Z. P. Seyyedlary, “Lanthanum Nitrate hexahydrate (La(NO3)3.6H2O), An Efficient and Highly Selective Catalyst for Solventless Acetylation of Alcohols and Phenols with Acetyl Chloride,” Journal of the Iranian Chemical Research, Vol. 2, 2009, pp. 31-38.
[40] C. Yue, Q. Liu, T. Yi and Y. Chen, “Acetylation of Alcohols and Phenols with Acetic Anhydride under Solvent-Free Conditions Using an Ionic Liquid Based on Morpholine as a Recoverable and Reusable Catalyst,” Monatshefte fur Chemie-Chemical Monthly, Vol. 141, No. 9, 2010, pp. 975-978.
[41] L. Osiglio, G. Romanelli and M. Blanco, “Alcohol Acetylation with Acetic Acid Using Borated Zirconia as Catalyst,” Journal of Molecular Catalysis A: Chemical, Vol. 316, No. 1-2, 2010, pp. 52-58. doi:10.1016/j.molcata.2009.09.021
[42] S. S. Gholap, G. B. Tambe and C. H. Gill, “Chemoselective Acylation of Amines, Thiols and Phenols Using 2,4,6-Triacyloxy-l,3,5-Triazine (TAT) as a New and Effective Reagent Under Mild Condition,” Journal of Indian Chemical Society, Vol. 86, No. 2, 2009, pp. 179-182.
[43] S. Naik, G. Bhattacharjya, B. Talukdar, and B. K. Patel, “Chemoselective Acylation of Amines in Aqueous Media,” European Journal of Organic Chemistry, Vol. 2004, No. 6, 2004, pp. 1254-1260. doi:10.1002/ejoc.200300620
[44] N. Lu, W. H. Chang, W. H. Tu and C. K. Li, “A Salt Made of 4-N,N-Dimethylaminopyridine (DMAP) and Saccharin as an Efficient Recyclable Acylation Catalyst: A New Bridge Between Heterogeneous and Homogeneous Catalysis,” Chemical Communications, Vol. 47, No. 25, 2011, pp. 7227-7229. doi:10.1039/c1cc11556a
[45] M. Hara, T. Yoshida, A. Takagaki, T. Takata, J. N. Kondo, S. Hayashi and K. Domen, “A Carbon Material as a Strong Protonic Acid,” Angewandte Chemie International Edition, Vol. 43, No. 22, 2004, pp. 2955-2958. doi:10.1002/anie.200453947
[46] M. Toda, A. Takagaki, M. Okamura, J. N. Kondo, S. Hayashi, K. Dome and M. Hara, “Green Chemistry: Biodiesel Made with Sugar Catalyst,” Nature, Vol. 438, No. 7065, 2005, p. 178. doi:10.1038/438178a
[47] A. Takagaki, M. Toda, M. Okamura, J. N. Kondo, S. Hayashi, K. Domen and M. Hara, “Esterification of Higher Fatty Acids by a Novel Strong Solid Acid,” Catalysis Today, Vol. 116, No. 2, 2006, pp. 157-161. doi:10.1016/j.cattod.2006.01.037
[48] M. H. Zong, Z. Q. Duan, W. Y. Lou, T. J. Smith and H. Wu, “Preparation of a Sugar Catalyst and its Use for Highly Efficient Production of Biodiesel,” Green Chemistry, Vol. 9, No. 5, 2007, pp. 434-437. doi:10.1039/b615447f
[49] B. L. A. Prabhavathi Devi, K. N. Gangadhar, P. S. Sai Prasad, B. Jagannadh and R. B. N. Prasad, “A Glycerol-Based Carbon Catalyst for the Preparation of Biodiesel,” ChemSusChem, Vol. 2, No. 7, 2009, pp. 617-620. doi:10.1002/cssc.200900097
[50] B. L. A. Prabhavathi Devi, K. N. Gangadhar, K. L. N. Siva Kumar, K. Shiva Sanker, R. B. N. Prasad and P. S. Sai Prasad, “Synthesis of Sulfonic Acid Functionalized Carbon Catalyst from Glycerol Pitch and Its Application for Tetrahydropyranyl Protection/Deprotection of Alcohols and Phenols,” Journal of Molecular Catalysis A: Chemical, Vol. 345, No. 1-2, 2011, pp. 96-100. doi:10.1016/j.molcata.2011.05.025
[51] K. Ramesh, S. Narayana Murthy, K. Karnakar, Y. V. D. Nageswar, K. Vijayalakhsmi, B. L. A. Prabhavathi Devi and R. B. N. Prasad, “A Novel Bioglycerol-Based Recyclable Carbon Catalyst for an Efficient One-Pot Synthesis of Highly Substituted Imidazoles,” Tetrahedron Letters, Vol. 53, No. 9, 2012, pp. 1126-1129. doi:10.1016/j.tetlet.2011.12.092
[52] K. Karnakar, S. Narayana Murthy, K. Ramesh, Y. V. D. Nageswar, T. Vijai Kumar Reddy, B. L. A. Prabhavathi Devi and R. B. N. Prasad, “Revisit to the Biginelli Reaction: A Novel and Recyclable Bioglycerol-Based Sulfonic Acid Functionalized Carbon Catalyst for One-Pot Synthesis of Substituted 3,4-Dihydropyrimidin-2-(1H)-ones,” Tetrahedron Letters, Vol. 53, No. 15, 2012, pp. 1968-1973. doi:10.1016/j.tetlet.2012.02.018
[53] K. Ramesh, S. Narayana Murthy, K. Karnakar, K. Harsha Vardhan Reddy, Y. V. D. Nageswar, M. Vijay, B. L. A. Prabhavathi Devi and R. B. N. Prasad, “A Mild and Expeditious Synthesis of Amides from Aldehydes Using Bio Glycerol-Based Carbon as a Recyclable Catalyst,” Tetrahedron Letters, Vol. 53, No. 21, 2012, pp. 2636-2638. doi:10.1016/j.tetlet.2012.03.051
[54] K. Karnakar, S. Narayana Murthy, K. Ramesh, K. Harsha Vardhan Reddy, Y. V. D. Nageswar, U. Chandrakala, B. L. A. Prabhavathi Devi and R. B. N. Prasad, “A Novel One-Pot Synthesis of Spiro[indoline-3,4’-pyrazolo[3,4-e] [1,4]thiazepine]diones Using Recyclable Bioglycerol-Based Sulfonic Acid Functionalized Carbon Catalyst,” Tetrahedron Letters, Vol. 53, No. 27, 2012, pp. 3497- 3501. doi:10.1016/j.tetlet.2012.04.122

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.