Comparison of High Field Electron Transport in GaAs, InAs and In0.3Ga0.7As

Abstract

An ensemble Monte Carlosimulation is used to compare high field electron transport in bulk GaAs, InAs and In0.3Ga0.7As. In particular, velocity overshoot and electron transit times are examined. We find the steady state velocity of the electrons is the most important factor determining transit time over distances longer then 0.2 μm. Over shorter distances velocity overshoot effects in InAs and In0.3Ga0.7 As at high fields are comparable to those in GaAs. We estimate the minimum transit time across a 1 μm InAs sample to be about 4.2 ps. Similar calculations for In0.3Ga0.7As yield 6 ps (for GaAs yield 10 ps). Calculations are made using a nonparabolic effective mass energy band model, Monte Carlo simulation that includes all of the major scattering mechanisms. The band parameters used in the simulation are extracted from optimized pseudopotential band calculations to ensure excellent agreement with experimental information and ab initio band models.

Share and Cite:

B. Bouazza, A. Guen-Bouazza, C. Sayah and N. Chabane-Sari, "Comparison of High Field Electron Transport in GaAs, InAs and In0.3Ga0.7As," Journal of Modern Physics, Vol. 4 No. 4A, 2013, pp. 121-126. doi: 10.4236/jmp.2013.44A012.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] D. Vasileska and S. M. Goodnick, “Computational Electronics,” Department of Electrical Engineering, Arizona State University, Tempe, 2006.
[2] L. Shifren, “Ensemble Monte Carlo Study Ultrafast Phenomena Due to Hot Photo—Excited Carriers in bulk GaAs,” Thesis for the Degree Master of Science, Arizona State University, Arizona, 1998.
[3] P. Hesto, “Simulation Monte Carlo du Transport Non Stationnaire Dans les Dispositifs Submicroniques, Importance du Phénomène Balistique Dans GaAs a 77 k,” Ph.D. Thesis, Université de Paris-Sud, Centre d’Orsay, 1984.
[4] M. Akarsu and O. Ozbas, “Osmangazi Monte Carlo Simulation for Electron Dynamics in Semiconductor Devices,” Mathematical and Computational Applications, Vol. 10, No. 1, 2005, pp. 19-26.
[5] C. Moglestue, “Monte Carlo Simulation of Semiconductor Devices,” Chapman & Hall, London, 1993. doi:10.1007/978-94-015-8133-2
[6] C. Jacoboni and P. Lugli, “The Monte Carlo Method for Semiconductor Device Simulation,” Springer-Verlag Wien, New York, 1989. doi:10.1007/978-3-7091-6963-6
[7] C. Sayah, “Application de la Méthode de Monte Carlo aux Composés III-V,” Thèse de Magister en Electronique, Faculté des Sciences de l’Ingénieur, Université Abou-Bekr Belkaid, Tlemcen, 2002.
[8] S. Galdin, “étude du Transistor Dipolaire a Double Hétérojonction Si/SiGe/Si Par Simulation Monte Carlo,” Thèse de Docteur en Sciences, Université de Paris-Sud, Centre d’Orsay, 1992.
[9] F. M. Abou El-Ela, “Temperature Dependence of the Transport Properties in ZnS,” Egyptian Journal of Solids, Vol. 23, No. 1, 2000, pp. 27-35.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.