Densification of Lithium Disilicate under High Pressure Investigated by XPS


The aim of this work was to investigate by X-ray photoelectron spectroscopy the effect of high pressure on the chemical environments of Si 2p, O 1s and Li 1s in lithium disilicate glass ceramic with stoichiometric composition Li2O·2SiO2 (LS2). A group of samples was processed at 2.5 GPa, 4 GPa and 7.7 GPa at room temperature and a second group was crystallized under high pressure and high temperature. Large shifts of the binding energy toward higher energies were observed in the X-ray photoelectron spectroscopy spectra for samples of the first group after densification at 2.5 and 4 GPa. For samples processed at 7.7 Gpa, the major component of the binding energy for the Si 2p environment remained practically unchanged compared to the pristine sample but new components, with smaller intensities, appeared in the spectra, indicating the existence of distinct Q-species induced by high pressure. This behavior may be related to changes in the number of bridged and non-bridged oxygen atoms in the glass structure. The results for the second group of samples, crystallized under high pressure, showed evidences of three binding energies for the O atoms, one of them related to non-bridged and two of them to bridged O atoms.

Share and Cite:

S. Buchner, C. Radtke and N. Balzaretti, "Densification of Lithium Disilicate under High Pressure Investigated by XPS," Open Journal of Inorganic Non-metallic Materials, Vol. 3 No. 2, 2013, pp. 15-21. doi: 10.4236/ojinm.2013.32004.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] N. Kitamura, K. Fukumi, H. Mizoguchi, M. Makihara, A. Higuchi, N. Ohno and T. Fukunaga, “High Pressure Densification of Lithium Silicate Glasses,” Journal of Non-Crystalline Solids, Vol. 274, No. 3, 2000, pp. 244-248. doi:10.1016/S0022-3093(00)00190-3
[2] P. W. Bridgmann and I. Simon, “Effects of Very High Pressures on Glass,” Journal of Applied Physics, Vol. 24, No. 4, 1953, pp. 405-413. doi:10.1063/1.1721294
[3] J. W. P. Schmelzer, E. D. Zanotto and V. M. Fokin, “Pressure Dependence of Viscosity,” The Journal of Chemical Physics, Vol. 122, No. 7, 2005, Article ID: 074511. doi:10.1063/1.1851510
[4] S. Buchner, P. Soares, A. S. Pereira, E. B. Ferreira and N. M. Balzaretti, “Effect of High Pressure in the Li2O-2SiO2 Crystallization,” Journal of Non-Crystalline Solids, Vol. 356, No. 52-54, 2010, pp. 3004-3308. doi:10.1016/j.jnoncrysol.2010.02.027
[5] S. Buchner, C. M. Lepienski, P. C. Soares Jr. and N. M. Balzaretti, “Effect of High Pressure on the Mechanical Properties of Lithium Disilicate Glass Ceramic,” Materials Science and Engineering: A, Vol. 528, No. 10-11, 2011, pp. 3921-3924. doi:10.1016/j.msea.2011.01.095
[6] S. Buchner, M. B. Pereira and N. M. Balzaretti, “Behavior of the Refractive Index of Lithium Disilicate Glass Ceramic Processed at High Pressure and High Temperature,” Optical Materials, Vol. 34, No. 5, 2012, pp. 826-831. doi:10.1016/j.optmat.2011.11.018
[7] S. Buchner, “Efeito de Altas Pressões na Astrutura e nas Aropriedades da Vitroceramica Dissilicato de Lítio,” Ph.D. Thesis, Federal University of Rio Grande do Sul, São José, 2011.
[8] T. Fuss, C. S. Ray, N. Kitamura, M. Makihara and D. E. Day, “Pressure Induced Nucleation in a Li2O·2SiO2 Glass,” Journal of Non-Crystalline Solids, Vol. 318, No. 1-2, 2003, pp. 157-167. doi:10.1016/S0022-3093(02)01878-1
[9] T. Fuss, A. Mogus-Milankovic, C. S. Ray, C. E. Lesher, R. Youngman and D. E. Day, “Ex Situ XRD, TEM, IR, Raman and NMR Spectroscopy of Crystallization of Lithium Disilicate Glass at High Pressure,” Journal of Non-Crystalline Solids, Vol. 352, No. 38, 2006, pp. 4101-4111. doi:10.1016/j.jnoncrysol.2006.06.038
[10] T. Fuss, C. S. Ray, C. E. Lesher and D. E. Day, “In Situ Crystallization of Lithium Disilicate Glass: Effect of Pressure on Crystal Growth Rate,” Journal of Non-Crystalline Solids, Vol. 352, No. 21-22, 2006, pp. 2073-2081. doi:10.1016/j.jnoncrysol.2006.03.005
[11] I. Gutzow, B. Durschang and C. Russel, “ Crystallization of Glass Forming Melts under Hydrostatic Pressure and Shear Stress Part I. Crystallization Catalysis under Hydrostatic Pressure: Possibilities and Limitations” Journal of Materials Science, Vol. 32, No. 20, 1997, pp. 5389-5403. doi:10.1023/A:1018683331603
[12] J. W. Adams and B. H. W. S. De Jong, Materials Research Society 1993 Fall Meeting Symposium Proceedings, Vol. 321, 1994, p. 339.
[13] P. C. Soares, P. A. P. Nascente and E. D. Zanotto, “XPS Study of Lithium Disilicate Glass Crystallisation,” Physics and Chemistry of Glasses, Vol. 43, No. 3, 2002, pp. 143-146.
[14] P. C. Soares, E. D. Zanotto, V. M. Fokin and H. Jain, “TEM and XRD Study of Early Crystallization of Lithium Disilicate Glasses,” Journal of Non-Crystalline Solids, Vol. 331, No. 1-3, 2003, pp. 217-227. doi:10.1016/j.jnoncrysol.2003.08.075
[15] H. W. Nesbitt, G. M. Bancroft, G. S. Henderson, R. Ho, K. N. Dalby, Y. Huang and Z. Yan, “Bridging, Non-Bridging and Free (O2–) Oxygen in Na2O-SiO2 Glasses: An X-Ray Photoelectron Spectroscopic (XPS) and Nuclear Magnetic Resonance (NMR) Study,” Journal of Non-Crystalline Solids, Vol. 357, No. 1, 2011, pp. 170-180. doi:10.1016/j.jnoncrysol.2010.09.031
[16] R. Sawyer, H. W. Nesbitt and R. A. Secco, “High Resolution X-Ray Photoelectron Spectroscopy (XPS) Study of K2O-SiO2 Glasses: Evidence for Three Types of O and at Least Two Types of Si,” Journal of Non-Crystalline Solids, Vol. 358, No. 2, 2012, pp. 290-302. doi:10.1016/j.jnoncrysol.2011.09.027
[17] M. I. Eremets, “High Pressure Experimental Methods,” Oxford University Press, New York, 1996.
[18] P. C. Soares, “Mecanismos de Cristalização em Vidros Disilicato de Lítio,” Ph.D. Thesis, Universidade Federal de São Carlos, Brazil, 2002.
[19] R. Brückner, H. U. Chun, H. Goretzki and M. Sammet, “XPS Measurements and Structural Aspects of Silicate and Phosphate Glasses,” Journal of Non-Crystalline Solids, Vol. 42, No. 1-3, 1980, pp. 49-60. doi:10.1016/0022-3093(80)90007-1
[20] J. W. Adams, “Morphogenesis in Lithium Disilicate Glass: Internal Nucleation in Amorphous Structure,” Ph.D. Thesis, University of Cambridge, Cambridge, 1993.
[21] W. Y. Ching, R. A. Murray, D. J. Lam and B. W. Veal, “Comparative Studies of Electronic Structures of Sodium Metasilicate and α and β Phases of Sodium Disilicate,” Physics Review B, Vol. 28, No. 8, 1983, pp. 4724-4735. doi:10.1103/PhysRevB.28.4724
[22] A. K. Pant and D. W. J. Cruickshank, “The Crystal Structure of α-Na2Si2O5,” Acta Crystallographica Section B, Vol. 24, No. 13-19, 1968, pp. 13-19. doi:10.1107/S0567740868001640
[23] J. Du and A. N. Cormack, “The Medium Range Structure of Sodium Silicate Glasses: A Molecular Dynamics Simulation,” Journal of Non-Crystalline Solids, Vol. 349, 2004, pp. 66-79. doi:10.1016/j.jnoncrysol.2004.08.264
[24] G. Mountjoy, “The Local Atomic Environment of Oxygen in Silicate Glasses from Molecular Dynamics,” Journal of Non-Crystalline Solids, Vol. 353, No. 18-21, 2007, pp. 1849-1853. doi:10.1016/j.jnoncrysol.2007.01.051

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.