Annealing effect on the optical and solid state properties of cupric oxide thin films deposited using the Aqueous Chemical Growth (ACG) method


Thin films of CuO having an average thickness of 720 nm were deposited on clean glass substrates using the Aqueous Chemical Growth (ACG) method with Cu(NO3)2 and C6H12N4 as precursors and annealed at different temperatures in order to determine the effect of annealing temperature on their optical and solid state properties. The study was carried out using Rutherford Backscattering (RBS) spectroscopy for t thickness and chemical composition, X-Ray Diffraction (XRD) for crystallographic structure and a UV-VIS spectrophotometer for spectral analysis. The results indicate that the absorbance and absorption/extinction coefficient of the films vary inversely with annealing temperature while the transmittance, reflectance, direct band gap, real/imaginary dielectric constants and refractive index vary directly with annealing temperature. The results further indicate an improvement in crystallinity as annealing temperature increases. The as-deposited and annealed ACG CuO thin films were found to be suitable for use as window layer in solar cells among other electronic and optoelectronic applications.

Share and Cite:

Mammah, S. , Opara, F. , Omubo-Pepple, V. , Ntibi, J. , Ezugwu, S. and Ezema, F. (2013) Annealing effect on the optical and solid state properties of cupric oxide thin films deposited using the Aqueous Chemical Growth (ACG) method. Natural Science, 5, 389-399. doi: 10.4236/ns.2013.53052.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Li, J., Vizkelethy, G., Revesz, P., Mayer, J.W. and Tu, K.N. (1991) Oxidation and reduction of copper oxide thin films. Journal of Applied Physics, 69, 1020. doi:10.1063/1.347417
[2] Ohya, Y., Ito, S., Ban, T. and Takahashi, Y. (2000) Preparation of CuO thin films and their electrical conductivity. Eng. Mater, 181, 113-116.
[3] Balamurugan, B. and Mehta, B.R. (2001) Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation. Thin Solid Films, 396, 90-96. doi:10.1016/S0040-6090(01)01216-0
[4] Tang, F., Yao, W.Y., Zhang, Y.F., Ma, Y.T., Teng, Y., Xu, T.G., Lang, S.H. and Zhu, Y.F. (2008) Synthesis of flowerlike CuO nanostructures as a sensitive sensor for catalysis. Sensors and Actuators, B134, 761-768.
[5] Jeong, Y.K. and Choi, G.M. (1996) Nanostoichiometry and electrical conduction of CuO. Journal of Physics and Chemistry of Solids, 57, 81-84. doi:10.1016/0022-3697(95)00130-1
[6] Herrain, J., Mandayo, G.G. and Castan, E. (2007) Physical behavior of BaTiO3-CuO thin film under carbon dioxide atmosphere. Sensors and Actuators B: Chemical, 127, 370-375. doi:10.1016/j.snb.2007.04.035
[7] Marabelli, F., Parrsavinciny, G.B. and Driolli, F.S. (1995) Optical gap of CuO. Physical Review B, 52, 1433-1436. doi:10.1103/PhysRevB.52.1433
[8] Yang, B.X., Thurston, T.R., Tranquada, J.M. and Shirane, G. (1989) Magnetic neutron scattering study of single crystal cupric oxide. Physical Review B, 39, 4343-4349
[9] Forsyth, J.B., Brown, P.J. and Wanklyn, B.M. (1988) Magnetism in cupric oxide. Journal of Physics C: Solid State Physics, 21, 2917-2929. doi:10.1088/0022-3719/21/15/023
[10] Ota, S.B. and Gmelin, E. (1992) Incommensurate antiferromagnetism in copper(II) oxide: Specific-heat study in a magnetic field. Physical Review B, 46, 11632-11635. doi:10.1103/PhysRevB.46.11632
[11] Qin, H.W., Zhang, Z.L., Liu, X., Zhang, Y.J. and Hu, J.F. (2010) Room-temperature ferromagnetism in CuO sol-gel powders and films. Journal of Magnetism and Magnetic Materials, 322, 1994-1998. doi:10.1016/j.jmmm.2010.01.021
[12] Eliseev, A.A., Lukashin, A.V., Vertegel, A.A., Heifets, L.I., Zhirov, A.I. and Tretyakov, Y.D. (2000) Complexes of Cu(II) with polyvinyl alcohol as precursors for the preparation of CuO/SiO2 nanocomposites. Material Research Innovations, 3, 308-312. doi:10.1007/PL00010877
[13] Bayansal, F., Kahraman, S., Cankaya, G., Cetinkara, H.A. Guider, H.S. and Cakaya, H.M. (2011) Growth of homogeneous CuO nano-structured thin films by a simple solution method. Journal of Alloys and Compounds, 509, 2094- 2098. doi:10.1016/j.jallcom.2010.10.146
[14] Zou, Y.L., Li, Y., Zhang, N. and Liu, X.L. (2011) Flowerlike CuO Synthesized by CTAB-assisted hydrothermal method. Bulletin of Materials Science, 34, 976-971.
[15] Liu, B. and Zeng, H.C. (2004) Mesoscale organization of CuO nanoribbons: Formation of “dandelions”. Journal of the American Chemical Society, 126, 8124-8125. doi:10.1021/ja048195o
[16] Gao, P., Chen, Y.J., Lv, H.J., Li, H.L. and Gao, H.J. (2009) Synthesis of CuO nanoribbon arrays with noticeable electrochemical hydrogen storage ability by a simple precursor dehydration route at lower temperature. International Journal of Hydrogen Energy, 34, 3065-3069. doi:10.1016/j.ijhydene.2008.12.050
[17] Su, Y.K., Shen, C.M., Yang, H.T., Li, H.L. and Gao, H.J. (2007) Controlled synthesis of highly ordered CuO nanowire arrays by template-based sol-gel route. Transactions of Nonferrous Metals Society of China, 17, 783-786. doi:10.1016/S1003-6326(07)60174-5
[18] Zheng, L.K. and Liu, X.J. (2007) Solution-phase synthesis of CuO hierarchical nanosheet at near-neutral pH and near room-temperature. Materials Letters, 61, 2222-2226. doi:10.1016/j.matlet.2006.08.063
[19] Zarate, R.A., Hevia, F., Fuentes, S., Fuenzalida, V.M. and Zuniga, A. (2007) Novel route to synthesize CuO nanoplatelets. Journal of Solid State Chemistry, 180, 1464- 1469. doi:10.1016/j.jssc.2007.01.040
[20] Dar, M.A., Kim, W.B., Sohn, J.M. and Shin, H.S. (2008) Structural and magnetic properties of CuO nanoneedles synthesized by hydrothermal method. Applied Surface Science, 254, 7477-7481.
[21] Morales, J., Sánchez, L., Martín, F., Ramos-Barrado, J.R. and Sánchez, M. (2004) Nanostructured CuO thin film electrodes prepared by spray pyrolysis: A simple method for enhancing electrochemical performance of CuO in lithium cells. Electrochemical Acta, 49, 4589-4597. doi:10.1016/j.electacta.2004.05.012
[22] Poizor, P., Laruella, S., Dupont, L. and Tarascon, J.M. (2000) Nano-sized transition metal oxides as negative electrode materials for lithium-ion batteries. Nature, 407, 496-499. doi:10.1038/35035045
[23] Awgouropoules, G., Joaminides, T., Papadopoulou, C., Batista, J, Hocever, S. and Matralis, H.K. (2002) A comparative study of Pt/γ-Al2O3, Au/α-Fe2O3 and CuO-CeO2 catalyst for the selective oxidation of carbon monoxide in excess hydrogen. Catalysis Today, 75, 157-167. doi:10.1016/S0920-5861(02)00058-5
[24] Nagase, K., Zhang, Y., Kodama, Y. and Kakuta, J. (1999) Dynamic study of the oxidation state of copper in the course of carbon monoxide oxidation over powdered CuO and Cu2O. Journal of Catalysis, 187, 123-130. doi:10.1006/jcat.1999.2611
[25] Chen, J. Huang, N.Y., Deng, S.Z., She, J.C., Xu, N.S., Zhang, W.X., Wen, X.G. and Yang, S.H. (2005) Effects of light illumination on field emission from CuO nanobelt arrays. Applied Physics Letters, 86, 157-107.
[26] Liao, L., Zhang, Z., Yan, B., Zheng, Z., Bao, Q.L., Wu, T., Li, C.M., Shen, Z.X., Zhang, J.X., Gong, H., Li, J.C. and Yu, T. (2009) Multifunctional CuO nanowires devices: p-type field effect transistors and selective CO gas sensors. Nanotechnology, 20, 085203. doi:10.1088/0957-4484/20/8/085203
[27] Frietsh, M., Zudock, F., Goschnick, J. and Bruns, M. (2000) CuO catalytic membrane asselectivity trimmer for metal oxide gas sensors. Sensors and Actuators B: Chemical, 65, 379-381. doi:10.1016/S0925-4005(99)00353-6
[28] Chowdhuri, A., Gupta, V., Streenvas, K., Kumar, R., Mozundar, S. and Patanjali, P.K. (2004) Response speed of SnO2-based H2S gas sensors with CuO nanoparticals. Applied Physics Letters, 84, 1180-1182. doi:10.1063/1.1646760
[29] Vasiliev, R.B., Rumyanteva, M.N., Yakovlev, N.V. and Gaskor, A.M. (1998) CuO/SnO2 thin film heterostructures as chemical sensors to H2S. Sensors and Actuators B: Chemical, 50, 186-193. doi:10.1016/S0925-4005(98)00235-4
[30] Nakamura, Y., Zhuang, H., Kishimoto, A., Okada, O. and Yanagida, H. (1998) Enhanced CO and CO2 gas sensitivity of the CuO/ZnO heterocontact made by quenched CuO ceramics. Journal of the Electrochemical Society, 145, 632-637. doi:10.1149/1.1838315
[31] Liu, Y.L., Liao, L., Li, J.C. and Pan, C.X. (2007) From Copper nanocrystalline to CuOnanoneedle array: Synthesis, growth mechanism and properties. Journal of Physical Chemistry C, 111, 5050-5056. doi:10.1021/jp069043d
[32] Ray, S.C. (2001) Preparation of copper oxide thin film by the sol-gel-like dip technique and study of their structural and optical properties. Solar Energy Materials and Solar Cells, 68, 307-312.
[33] Maruyama, T. (1998) Copper oxide thin films prepared by chemical vapor deposition from copper dipivaloylmethanate. Solar Energy Materials and Solar Cells, 56, 85-92.
[34] Yoon, K.H., Choi, W.I. and Kang, D.H. (2000) Photoelectrochemical properties of copper oxide thin films coated on an n-Si substrate. Thin Solid Films, 372, 250- 256. doi:10.1016/S0040-6090(00)01058-0
[35] Rakhshani, A.E. (1986) Preparation, characteristics and photovoltaic properties of cuprous oxide—A review. Solid-State Electron, 29, 7-17.
[36] Dai, P.C., Mook, H.A., Aeppli, G., Hayden, S.M. and Dogan, F. (2000) Resonance as a measure of pairing correlations in the high-Tc superconductor YBa2Cu3O6.6. Nature, 406, 965-968. doi:10.1038/35023094
[37] Eskes, H., Tjeng, L.H. and Sawatzky, G.A. (1990) Cluster mode calculation of the electronic structure of CuO. Physical Review B, 41, 288-292. doi:10.1103/PhysRevB.41.288
[38] Patake, V.D., Joshi, S.S., Likhande, C.D. and Joo, O.-S. (2009) Electrode posited porous and amorphous Copper oxide film for application in super capacitor. Materials Chemistry and Physics, 114, 6-9. doi:10.1016/j.matchemphys.2008.09.031
[39] Muller, K.H. (2001) High-Tc supperconductors and related materials. Kluwer Academic, Dordrecht.
[40] Brookshier, M.A., Chusuei, C.C. and Goodman, D.W. (1999) Control of CuO particle size on SiO2 by spin coating. Langmuir, 15, 2043-2046. doi:10.1021/la981325k
[41] Bae, H.Y. and Choi, G.M. (1999) Electrical and reducing gas sensing properties of ZnO and ZnO-CuO thin films fabricated. Sensors and Actuators B: Chemical, 55, 47-54. doi:10.1016/S0925-4005(99)00038-6
[42] Xu, J.F., Ji, W., Shen, Z.X., Tang, S.H., Ye, X.R., Jia, D.Z. and Xin, X.Q. (1999) Preparation of CuO and characterization nanocrystals. Journal of Solid State Chemistry, 147, 516-519. doi:10.1006/jssc.1999.8409
[43] Su, Y.K., Shen, C.M., Yang, H.T., Li, L. and Gao, H.J. (2007) Controlled synthesis of highly ordered CuO nanowire arrays by template based sol-gel route. Transactions of Nonferrous Metals Society of China, 17, 783-786. doi:10.1016/S1003-6326(07)60174-5
[44] Tang, X.L., Ren, L., Sun, L.N., Tian, W.G., Cao, M.H. and Hu, C.W. (2006) A solvothermal route to Cu2O nanocubes and Cu nanoparticles. Chemical Research in Chinese Universities, 22, 547-551. doi:10.1016/S1005-9040(06)60159-1
[45] Song, X., Yu, H. and Sun, S. (2005) Single Crystalline CuOnanobelts fabricated, by aconvenient route. Journal of Colloid and Interface Science, 289, 588-591.
[46] Yuan, C.O., Jiang, H.F., Lin, C. and Liao, S.J. (2007) Shape and size-controlled electrochemical synthesis of cupric oxide nanocrystals. Journal of Crystal Growth, 303, 400-406. doi:10.1016/j.jcrysgro.2006.12.047
[47] Chen, J.T., Zhang, F., Wang, J., Zhang, G.A., Mian, B.B., Fan, X.Y., Yan, D. and Yan, P.X. (2008) CuO nanowires synthesized by thermal oxidation route. Journal of Alloys and Compounds, 454, 268-273.
[48] Vayssieres, L. (2004) On the design of advanced metal oxide nanomaterials. International Journal of Nanotechnology, 1, 1-41.
[49] Hu, X., Masuda, Y., Olyi T. and Kato, K. (2009) Fabrication of ZnO nanowhiskers array film by forced-hydrolysisinitiated-nucleation technique using various templates. Thin Solid Films, 518, 621-624.
[50] Zhang, X., Wang, L. and Zhow, G. (2005) Synthesis of well-aligned ZnO nanowires with catalysts. Reviews on Advanced Materials Science, 10, 69-72.
[51] Mammah, S.L., Opara, F.E., Sigalo, F.B., Ezugwu, S.C. and Ezema, F.I. (2012) Effect of concentration on the optical and solid state properties of ZnO thin films deposited by Aqueous Chemical Growth (ACG) method. Journal of Modern Physics, 3, 947-954. doi:10.4236/jmp.2012.39124
[52] Vayssières, L., Chanéac, C., Tronc, E. and Jolivet, J.P. (1998) size tailoring of magnetite particles formed by aqueous precipitation: An example of thermodynamic stability of nanometric oxide particles. Journal of Colloid and Interface Science, 205, 205-212. doi:10.1006/jcis.1998.5614
[53] Vayssieres, L. (1995) Précipitation de Nanoparticilues d'oxydes en solution Aqueuse: Controle?le de la croissance et de la tension interfaciale. Ph.D. Thesis, Universite Pierre et Marie Curie, Paris, 1-145.
[54] Aveyard, R. (1987) Ultralow tensions and microemulsions. Chemistry & Industry, 14, 474-478.
[55] Edelstein, H., Rahman, Z. and Schubert, U. (2002) Nanostructured material. Springer-Verlage, Berlin.
[56] Mendez-Villuendas, E. and Bowles, R.K. (2007) Surface nucleation in the freezing of gold nanoparticles. Physical Review Letters, 498, 159901.
[57] Abraham, F.F. (1974) Homogeneous nucleation: Theory. Academy Press, New York.
[58] Anisimov, M.P. (2003) Nucleation: Theory and experiment. Russian Chemical Reviews, 72, 591-600. doi:10.1070/RC2003v072n07ABEH000761
[59] Schmelzer, J. (Ed), Fokin, Yuritsyn, Zanotto (2005) Nucleation theory and application, nucleation and crystallization kinetics in silicate glasses: Theory and experiment. Wiley-VCH, Verlag, GmbH and Co., Berlin, 76-83.
[60] Lee, S.F., Lee, L.Y. and Change, Y.P. (2009) A nanostructural zinc oxide electrode prepared by a hydrothermal method. Journal of Science and Engineering Technology, 5, 13-20.
[61] Cheng, A.P., Yang, G., Long, H., Li, F., Li, Y.H. and Lu P.X. (2009) Non linear optical properties of laser deposited CuO thin films. Thin Solid Films, 517, 4277-4280.
[62] Serin, T., Yildiz, A., Sahin, S.H. and Serin, N. (2001) Extraction of important electrical parameters of CuO. Physics B, 408, 575-578.
[63] Alkoy, E.M. and Kelly, P. (2000) The structure and properties of copper oxide and copper aluminium oxide coatings prepared by pulsed magnetron sputtering of powder targets. Vacuum, 79, 221-230. doi:10.1016/j.vacuum.2005.03.011
[64] Ray, S.C. (2001) Preparation of copper oxide thin film by the sol-gel-like dip technique and study of their structural and optical properties. Solar Energy Materials and Solar Cells, 68, 307-312. doi:10.1016/S0927-0248(00)00364-0
[65] Pierson, J.F., Thobor-Keck, A. and Billiard A. (2003) Cuprite, paramelaconite and tenorite films deposited by reactive magnetron sputtering. Applied Surface Science, 210, 359-367. doi:10.1016/S0169-4332(03)00108-9
[66] Nair, M., Guerrero, L., Arenas, O.L. and Nair, P.K. (1999) Chemically deposited copper oxide thin films: Structural, optical and electrical characteristics. Applied Surface Science, 150, 143-153. doi:10.1016/S0169-4332(99)00239-1
[67] Seto, J.Y.W. (1975) The electrical properties of polycrystalline silicon thin films. Journal of Applied Physics, 46, 5247-5254. doi:10.1063/1.321593

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.