Theoretical Study with Rovibrational and Dipole Moment Calculation of the SiO Molecule

Abstract

Via CASSCF/MRCI and RSPT2 calculations (single and double excitation with Davidson correction) the potential en- ergy curves of 20 electronic states in the representation 2S+1Λ(±)of the molecule SiO have been calculated. By fitting these potential energy curves to a polynomial around the equilibrium internuclear distance re, the harmonic frequency ωe, the rotational constant Be, and the electronic energy with respect to the ground state Te have been calculated. For the considered electronic states the permanent dipole moment μ have been plotted versus the internuclear distance r. Based on the canonical functions approach, the eigenvalues Ev, the rotational constant Bv and the abscissas of the turning points rmin and rmax have been calculated. The comparison of these values to the experimental and theoretical results available in the literature is presented. In the present work 8 higher electronic states have been studied theoretically for the first time.

Share and Cite:

K. Badreddine, N. El-Kork and M. Korek, "Theoretical Study with Rovibrational and Dipole Moment Calculation of the SiO Molecule," Journal of Modern Physics, Vol. 4 No. 1, 2013, pp. 82-93. doi: 10.4236/jmp.2013.41014.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. W. Wilson, A. A. Penzias, K. B. Jefferts, M. Kutner, and P. Thaddeus, “Discovery of Interstellar Silicon Monoxide,” The Astrophysical Journal, Vol. 167, 1971, pp. L97-L100. HUdoi:10.1086/180769U
[2] J. Martin-Pintado, R. Bachiller and A. Fuente, “SiO Emission as a Tracer of Shocked Gas in Molecular Outflows,” Astronomy and Astrophysics, Vol. 254, No. FEB (I), 1992, pp. 315-326.
[3] D. R. Flower and G. P. des Forêt, “Non-Thermal Sputtering of Interstellar Grains in Magnetohydrodynamic Shocks,” Monthly Notices of the Royal Astronomical Society, Vol. 275, No. 4, 1995, pp. 1049-1056.
[4] P. Schilke, C. M. Walmsley, G. P. des Forêts and D. R. Flower, “SiO Production in Interstellar Shocks,” Astronomy and Astrophysics, Vol. 321, No. FEB (I), 1997, pp. 293-304.
[5] S. D. Le Picard, A. Canosa, G. P. des Forêts, C. Rebrion-Rowe and B. R. Rowe, “The Si(3PJ)+O2 Reaction: A Fast Source of SiO at Very Low Temperature; CRESU Measurements and Interstellar Consequences,” Astronomy and Astrophysics, Vol. 372, No. 3, 2001, pp. 1064-1070.
[6] F. Dayou and A. Spielfiedel, “Ab Initio Calculation of the Ground (1A’) Potential Energy Surface and Theoretical Rate Constant for the Si+O2\SiO+O Reaction,” Journal of Chemical Physics, Vol. 119, No. 8, 2003, pp. 4237-4250. HUdoi:10.1063/1.1594172U
[7] I. Jiménez-Serra, J. Martin-Pintado, A. Rodriguez-Franco and S. Martin, “Grain Evolution across the Shocks in the L1448-mm Outflow,” The Astrophysical Journal Letters, Vol. 627, No. 2, 2005, 2005, pp. L121-L124.
[8] N. T. X. Huynh, V.V. Hoang and H. Zung, “Evolution of Structure of SiO2 Nanoparticles upon Cooling from the Melt,” PMC Physics B, 2008, Article ID: 16. HUdoi:10.1186/1754-0429-1-16U
[9] I. S. Altman, D. Lee, J. D. Chung, J. Song and M. Choi1, “Light Absorption of Silica Nanoparticles,” Physical Review B, Vol. 63, No. 16, 2001, pp. 161402(R)-161402(R).
[10] K. P. Huber and G. Herzberg, “Constants of Diatomic Molecules,” Van Nostrand, Reinhold, 1979.
[11] T. G. Heil and S. H. Schaefer, “Potential Curves for the Valence—Excited States of Silicon Monoxide. A Theoretical Study,” Journal of Chemical Physics, Vol. 56, No. 2, 1972, pp. 958-969. HUdoi:10.1063/1.1677254U
[12] H. Varambhia, M. Gupta, A. Faure, K. L. Baluja and J. Tennyson, “Electron Collision with the Silicon Monoxide (SiO) Molecule Using the R-Matrix Method,” Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 42, No. 9, 2009, Article ID: 095204. HUdoi:10.1088/0953-4075/42/9/095204U
[13] J. R. Smith, H. Schlosser, W. Leaf, J. Ferrante, J. H. Rose, “Connection between Energy Relations of Solids and Molecules,” Physical Review A, Vol. 39, No. 2, 1989, pp. 514-517. HUdoi:10.1103/PhysRevA.39.514U
[14] S. Abdul-Al, M. Korek and A. R. Allouche, “HTheoretical Electronic Structure of the Lowest-Lying States of the YI MoleculeH,” Chemical Physics, Vol. 308, No. 1-2, 2005, pp. 1-6. HUdoi:10.1016/j.chemphys.2004.07.032U
[15] M. Korek, Y. A. Moghrabi and A. R. Allouche, “Theoretical Calculation of the Excited States of the KCs Molecule Including the Spin-Orbit Interaction,” Journal of Chemical Physics, Vol. 124, No. 9, 2006, Article ID: 094309. HUdoi:10.1063/1.2173239U
[16] M. Korek, S. Bleik and A. R. Allouche, “Theoretical Calculation of the Low Laying Electronic States of the Molecule NaCs with Spin-Orbit Effect,” Journal of Chemical Physics, Vol. 126, No. 12, 2007, Article ID: 124313. HUdoi:10.1063/1.2710257U
[17] F. Taher-Mansour, A. R. Allouche, M. Korek, “HTheoretical Electronic Structure of the Lowest-Lying States of ScCl Molecule below 2,2500 cm-1H,” Journal of Molecular Spectroscopy, Vol. 248, No. 1, 2008, pp. 61-65. HUdoi:10.1016/j.jms.2007.11.012U
[18] M. Korek, S. Kontar, F. Taher-Mansour and A. R. Allouche, “Theoretical Electronic Structure of the Molecule ScI,” International Journal of Quantum Chemistry, Vol. 109, No. 2, 2009, pp. 236-242. HUdoi:10.1002/qua.21779U
[19] M. Korek, S. Al-Shawa and G. Younes, “HTheoretical Calculation of the Electronic Structure of the Molecule LiRb including the Spin-Orbit InteractionH,” Journal of Molecular Structure: THEOCHEM, Vol. 899, No. 1-3, 2009, pp. 25-31. HUdoi:10.1016/j.theochem.2008.12.006U
[20] M. Korek and S.N. Abdul-Al, “HRovibrational Study and Dipole Moment Calculation of the Molecule YF with Spin-Orbit InteractionH,” Chemical Physics, Vol. 355, No. 2-3, 2009, pp. 130-134. HUdoi:10.1016/j.chemphys.2008.11.022U
[21] A. Hamdan and M. Korek, “HTheoretical Calculation of the Low-Lying Sextet Electronic States of CrF MoleculeH,” Chemical Physics, Vol. 369, No. 1, 2010, pp. 13-18. HUdoi:10.1016/j.chemphys.2010.01.023U
[22] A. Hamdan and M. Korek, “Theoretical Calculation of the Low-Lying Quartet States of the CrF Molecule,” Canadian Journal of Chemistry, Vol. 89, No. 10, 2011, pp. 1304-1311. HUdoi:10.1139/v11-082U
[23] A. Hamdan and M. Korek, “Theoretical Study with Vibration-Rotation and Dipole Moment Calculations of Quartet States of the CrCl Molecule,” International Journal of Quantum Chemistry, Vol. 111, No. 12, 2011, pp. 2960-2965. HUdoi:10.1002/qua.22602U
[24] H. Kobeissi, M. Korek and M. Dagher, “HOn the Computation of Diatomic Centrifugal Distortion Constants: Exact Solutions for Initial Value ProblemsH,” Journal of Molecular Spectroscopy, Vol. 138, No. 1, 1989, pp. 1-12. HUdoi:10.1016/0022-2852(89)90092-1U
[25] M. Korek and H. Kobeissi, “Highly Accurate Diatomic Centrifugal Distortion Constants for High Orders and High Levels,” Journal of Computational Chemistry, Vol. 13, No. 9, 1992, pp. 1103-1108. HUdoi:10.1002/jcc.540130909U
[26] M. Korek, “A One Directional Shooting Method for the Computation of Diatomic Centrifugal Distortion Constants,” Computer Physics Communications, Vol. 119, No. 2-3, 1999, pp. 169-178. HUdoi:10.1016/S0010-4655(98)00180-5U
[27] T. H. Dunning, “Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen,” Journal of Chemical Physics, Vol. 90, No. 2, 1989, pp. 1007-1024. HUdoi:10.1063/1.456153U
[28] N. Godbout, D. R. Salahub, J. Andzelm and E. Wimmer, “Optimization of Gaussian-type Basis Sets for Local Spin Density Functional Calculations. Part I. Boron through Neon, Optimization Technique and Validation,” Canadian Journal of Chemistry, Vol. 70, No. 2, 1992, pp. 560- 571. HUdoi:10.1139/v92-079U
[29] H. J. HWernerH, P. J. Knowles, R. HLindhH,H F. R. ManbyH, M. HSchützH, P. Celani, T. HKoronaH, G. HRauhutH, R. D. Amos, A. Bernhardsson, A. Berning, D. L. HCooperH, M. J. O. HDeeganH, A. J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, A. W. Lloyd,H S. J. McNicholasH,H W. MeyerH, M. E. Mura, A. NicklaB, P. Palmieri,H R. PitzerH, U. Schumann,H H. StollH,H A. J. StoneH, R. Tarroni and T. Thorsteinsson, “MOLPRO Is a Package of Ab Initio Programs,” 2008. http://www.molpro.net/info/molpro2006.1/molpro_manual
[30] A. R. Allouche, “Gabedit—A Graphical User Interface for Computational Chemistry Softwares,” Journal of Computational Chemistry, Vol. 32, No. 1, 2011, pp. 174-182. HUdoi:10.1002/jcc.21600U
[31] M. Friesen, M. Junker, A. Zumbusch and H. Schnockel, “Raman-Spectroscopy of Oligomeric SiO Species Isolated in Solid Methane,” Journal of Chemical Physics, Vol. 111, No. 17, 1999, pp. 7881-7888. HUdoi:10.1063/1.480123U
[32] C. E. Moore, “Atomic Energy Levels,” National Bureau of Standards Circular, Washington DC, 1949.
[33] P. Botschwina and P. Rosmus, “An Ab Initio Calculation of Spectroscopic Properties of SiO and HOSi+,” Journal of Chemical Physics, Vol. 82, No. 3, 1985, pp. 1420-1427. HUdoi:10.1063/1.448465U
[34] S. R. Langhoff and J. O. Arnold, “Theoretical Study of the X1+, A1, C1-, and E1+ States of the SiO Molecule,” Journal of Chemical Physics, Vol. 70, No. 2, 1979, pp. 852-863. HUdoi:10.1063/1.437491U
[35] H. J. Werner, P. Rosmus and M. Grimm, “HAb Initio Calculations of Radiative Transition Probabilities in the X1σ+ State of SiO and the X2σ+ and A2 Π states of SiO+H,” Chemical Physics, Vol. 73, No. 1-2, 1982, pp. 169-178. HUdoi:10.1016/0301-0104(82)85158-6U
[36] T. Torring, Zeitschrift für Naturforschung, Vol. 23A, 1968, pp. 777-778.
[37] E. L. Manson Jr., W. W. Clark, F. C. Delucia and W. Gordy, “Millimeter Spectrum and Molecular Constants of Silicon Monoxide,” Physical Review A, Vol. 15, No. 1, 1977, pp. 223-226. HUdoi:10.1103/PhysRevA.15.223U
[38] F. J. Lovas, A. G. Maki and W. B. Olson, “HThe Infrared Spectrum of SiO near 1240 cm-1 and Its Relation to the Circumstellar SiO MaserH,” Journal of Molecular Spectroscopy, Vol. 87, No. 2, 1981, pp. 449-458. HUdoi:10.1016/0022-2852(81)90416-1U
[39] G. L. Gutsev, P. Jena and R. J. Bartlett, “Two Thermo-Dynamically Stable States in SiO- and PN-,” Physical Review A, Vol. 58, No. 6, 1998, pp. 4972-4974. HUdoi:10.1103/PhysRevA.58.4972U
[40] S. Chattopadhyaya, A. Chattopadhyaya and K. Kummar Das, “Configuration Interaction Study of the Low-Lying Electronic States of Silicon Monoxide,” The Journal of Physical Chemistry A, Vol. 107, No. 1, 2003, pp. 148-158. HUdoi:10.1021/jp021845vU
[41] J. W. Raymonda, J. S. Muenter and W. A. Klemperer, “Electric Dipole Moment of SiO and GeO,” Journal of Chemical Physics, Vol. 52, No. 7, 1970, pp. 3458-3462. HUdoi:10.1063/1.1673510U
[42] G. L. Gutsev and L. Adamowicz, “Electronic and Geometrical Structure of Dipole-Bound Anions Formed by Polar Molecules,” Journal of Chemical Physics, Vol. 99, No. 36, 1995, pp. 13412-13421. HUdoi:10.1021/j100036a015U
[43] C. Desfrancois, H. Abdoul-Carime and J. P. Schermann, “Ground-State Dipole-Bound Anions,” International Journal of Modern Physics B, Vol. 10, No. 12, 1996, pp. 1339-1395. HUdoi:10.1142/S0217979296000520U
[44] M. E. Sanz, M. C. McCarthy and P. Thaddeus, “Rotational Transitions of SO, SiO, and SiS Excited by a Discharge in a Supersonic Molecular Beam: Vibrational Temperatures, Dunham Coefficients, Born-Oppenheimer Breakdown, and Hyperfine Structure,” Journal of Chemical Physics, Vol. 119, No. 22, 2003, pp. 11715-11727. HUdoi:10.1063/1.1612481U
[45] G. Hager, R. Harris and S. G. Hadley, “The a3Σ+→X1Σ+ and b3Π→X1Σ+ Band Systems of SiO and the a3Σ+→X1Σ+ Band System of GeO Observed in Chemiluminescence,” Journal of Chemical Physics, Vol. 63, No. 7, 1975, pp. 2810-2821. HUdoi:10.1063/1.431713U
[46] H. Bredohl, R. Cornet, I. Dubois and F. Remy, “The a3Πj-X1B+ transition of SiO,” Journal of Physics B: Atomic and Molecular Physics, Vol. 7, No. 3, 1974, pp. L66- L69. HUdoi:10.1088/0022-3700/7/3/019U
[47] S. Nagaraj and R. D. Verma, “A3Σ-3Π Transition of the SiO Molecule,” Canadian Journal of Physics, Vol. 48, No. 12, 1970, pp. 1436-1440. HUdoi:10.1139/p70-181U
[48] R. Field, A. Lagerqvist and I. Renhorn, “HThe Spectrum of Si18O in the Vacuum Ultraviolet RegionH,” Journal of Molecular Spectroscopy, Vol. 49, No. 1, 1974, pp. 157-166. HUdoi:10.1016/0022-2852(74)90104-0U
[49] D. L. Hildenbrand, “The Gaseous Equilibrium Ge + SiO = GeO + Si and the Dissociation Energy of SiO,” High Temperature Science, Vol. 4, 1972, pp. 244-245.
[50] J. Oddershede and N. Elander, “Spectroscopic Constants and Radiative Lifetimes for Valence Excited Bound States in SiO,” Journal of Chemical Physics, Vol. 65, No. 9, 1976, pp. 3495-3505. HUdoi:10.1063/1.433577U
[51] A. Lagerqvist, I. Renhorn and N. Elander, “The Spectrum of SiO in the Vacuum Ultraviolet Region,” Journal of Molecular Spectroscopy, Vol. 46, No. 2, 1973, pp. 285-315. HUdoi:10.1016/0022-2852(73)90043-XU
[52] N. Elander and A. Lagerqvist, “On the E1Σ+-X1Σ+ System of SiO in the Vacuum Ultraviolet Region,” Physica Scripta, Vol. 3, No. 6, 1971, pp. 267-271. HUdoi:10.1088/0031-8949/3/6/005U
[53] J. Klache, “Trends in Ground and Excited State Electron Affinities of Group 14, 15, and 16 Mixed Diatomic Anions: A Computational Study,” Physical Chemistry Che- mical Physics, Vol. 4, No. 14, 2002, pp. 3311-3317. HUdoi:10.1039/b201498jU
[54] A. Lagerqvist, I. Renhorn and N. Elander, “HThe Spectrum of Si18O in the Vacuum Ultraviolet RegionH,” Journal of Molecular Spectroscopy, Vol. 49, No. 1, 1974, pp. 157-166. HUdoi:10.1016/0022-2852(74)90104-0U
[55] R. Tipping and C. Chakerian Jr., “Vibration-Rotation Intensities of SiO,” Journal of Molecular Spectroscopy, Vol. 88, No. 2, 1981, pp. 352-363. HUdoi:10.1016/0022-2852(81)90185-5U
[56] D. Shi, W. Li, J. Sun and Z. Zhu, “HMRCI Study on the Spectroscopic Parameters and Molecular Constants of the X1Σ+, a3Σ+, A1Π and C1Σ- Electronic States of the SiO MoleculeH,” Spectrochimica Acta A, Vol. 87, 2012, pp. 96-105. HUdoi:10.1016/j.saa.2011.11.017U

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.