Share This Article:

One Pot Synthesis of Graphene by Exfoliation of Graphite in ODCB

Full-Text HTML Download Download as PDF (Size:1827KB) PP. 42-48
DOI: 10.4236/graphene.2013.21006    6,226 Downloads   11,860 Views   Citations


Graphene, an extraordinary allotropy of carbon, the 2D nanosheet, have been synthesized through exfoliation of graphite in ortho dichloro benzene by sonication. The morphological changes in different interval of sonication have been investigated by Scanning Electron Microscopy (SEM) andTransmission Electron Microscopy (TEM). Raman Spectra confirmed the formation of defect free Graphene sheets. As prepared Graphene showed high thermal stability under N2 atmosphere. It has been observed that sonication for 4 hours, effectively exfoliates graphite to form Graphene sheets. However, further sonication leads to restacking of Graphene sheets. The formation of Graphene is supposed to be due to the Sonopolymerization of the solvent (ortho-dichloro benzene)and graphite solvent interaction.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

S. Sahoo, G. Hatui, P. Bhattacharya, S. Dhibar and C. Das, "One Pot Synthesis of Graphene by Exfoliation of Graphite in ODCB," Graphene, Vol. 2 No. 1, 2013, pp. 42-48. doi: 10.4236/graphene.2013.21006.


[1] A. K. Geim, “Graphene: Status and Prospects,” Science, Vol. 324, No. 5934, 2009, pp. 1530-1534. doi:10.1126/science.1158877
[2] Y. B. Zhang, Y. W. Tan, H. L. Stormer and P. Kim, “Ex- perimental Observation of the Quantum Hall Effect and Berry’s Phase in Graphene,” Nature, Vol. 438, No. 7065, 2005, pp. 201-204. doi:10.1038/nature04235
[3] M. J. Allen, V. C. Tung and R. B. Kaner, “Honeycomb Carbon: A Review of Graphene,” Chemical Reviews, Vol. 110, No. 1, 2010, pp. 132-145. doi:10.1021/cr900070d
[4] M. Rodolfo and L. V. P. Amadeo, “Graphene: Surfing Ripples towards New Devices,” Nature Nanotechnology, Vol. 4, No.9, 2009, pp. 549-550. doi:10.1038/nnano.2009.250
[5] J. Wu, W. Pisula and K. Müllen, “Graphenes as Potential Material for Electronics,” Chemical Reviews, Vol. 107, No. 3, 2007, pp. 718-747. doi:10.1021/cr068010r
[6] Y. M. Chang, H. Kim, J. H. Lee and Y-W. Song, “Multi- layered Graphene Efficiently Formed by Mechanical Ex- foliation for Nonlinear Saturable Absorbers in Fiber Mode- Locked Lasers,” Applied Physics Letters, Vol. 97, No. 21, 2010, Article ID: 211102. doi:10.1063/1.3521257
[7] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, S. M. Dresselhaus and J. Kong, “Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Va- por Deposition,” Nano Letters, Vol. 9, No. 1, 2009, pp. 30-35. doi:10.1021/nl801827v
[8] W. S. Hummers and R. E. Offeman, “Preparation of Gra- phitic Oxide,” Journal of American Chemical Society, Vol. 80, No. 6, 1958, pp.1339-1339. doi:10.1021/ja01539a017
[9] G. Eda, G. Fanchini and M. Chhowalla, “Large-Area Ultrathin Films of Reduced Graphene Oxide as a Trans- parent and Flexible Electronic Material,” Nature Nano- technology, Vol. 3, No. 5, 2008, pp. 270-274. doi:10.1038/nnano.2008.83
[10] Y. Xu, H. Bai, G. Lu, C. Li and G. Shi, “Flexible Gra- phene Films via the Filtration of Water-Soluble Nonco- valent Functionalized Graphene Sheets,” Journal of Ameri- can Chemical Society, Vol. 130, No. 18, 2008, pp. 5856- 5857. doi:10.1021/ja800745y
[11] D. Li, M. B. Mueller, S. Gilje, R. B. Kaner and G. G. Wallace, “Processable Aqueous Dispersions of Graphene Nanosheets,” Nature Nanotechnology, Vol. 3, No. 2, 2008, pp. 101-105. doi:10.1038/nnano.2007.451
[12] L.-Y. Meng and S.-J. Park, “Synthesis of Graphene Nano- sheets via Thermal Exfoliation of Pretreated Graphite at Low Temperature,” Advanced Materials Research, Vol. 123-125, 2010, pp. 787-790. doi:10.4028/
[13] W. Yang, E. Widenkvist, U. Jansson and H. Grennberg, “Stirring-Induced Aggregation of Graphene in Suspension,” New Journal of Chemistry, Vol. 35, No. 4, 2011, pp. 780-783. doi:10.1039/c0nj00968g
[14] P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim and K. S. Novoselov, “Graphene-Based Liquid Crystal Device,” Nano Letters, Vol. 8, No. 6, 2008, pp. 1704 -1708. doi:10.1021/nl080649i
[15] Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’ko, K, Yurii, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari and J. N. Coleman, “High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite,” Na- ture Nanotechnology, Vol. 3, No. 9, 2008, pp. 563-568. doi:10.1038/nnano.2008.215
[16] C. E. Hamilton, J. R. Lomeda, Z. Sun, J. M. Tour and A. R. Barron, “High-Yield Organic Dispersions of Unfunctionalized Graphene,” Nano Letters, Vol. 9, No. 10, 2009, pp. 3460-3462. doi:10.1021/nl9016623
[17] S. Niyogi, M. A. Hamon, D. E. Perea, C. B. Kang, B. Zhao, S. K. Pal, A. E. Wyant, M. E. Itkis and R. C. Haddon, “Ultrasonic Dispersions of Single-Walled Carbon Nanotubes,” Journal of Physical Chemistry B, Vol. 107, No. 34, 2003, pp. 8799-8804. doi:10.1021/jp034866d
[18] R. K. Moonoosawmy and P. Kruse, “To Dope or Not To Dope: The Effect of Sonicating Single-Wall Carbon Nano- tubes in Common Laboratory Solvents on Their Elec- tronic Structure,” Journal of American Chemical Society, Vol. 130, No. 40, 2008, pp. 13417-13424. doi:10.1021/ja8036788
[19] K.-J. Huang, D.-J.Niu, X. Liu, Z.-W. Wu, Y. Fan, Y.-F. Chang and Y.-Y. Wu, “Direct Electrochemistry of Cata- lase at Amine-Functionalized Graphene/Gold Nanoparti- cles Composite Film for Hydrogen Peroxide Sensor,” Electrochimica Acta, Vol. 56, No. 7, 2011, pp. 2947-2953. doi:10.1016/j.electacta.2010.12.094
[20] S. Konwer, J. P. Gogoi, A. Kalita and S. K. Dolui, “Syn- thesis of Expanded Graphite Filled Polyaniline Compos- ites and Evaluation of Their Electrical and Electrochemi- cal Properties,” Journal of Materials Science: Materials in Electronics, Vol. 22, No. 8, 2011, pp. 1154-1161. doi:10.1007/s10854-010-0276-7
[21] M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cancado, A. Jorio and R. Saito, “Studying Disorder in Graphite-Based Systems by Raman Spectroscopy,” Phy- sical Chemistry Chemical Physics, Vol. 9, No. 11, 2007, pp. 1276-1291. doi:10.1039/b613962k
[22] C. Thomsen and S. Reich, “Double Resonant Raman Scattering in Graphite,” Physical Review Letters, Vol. 85, No. 24, 2000, pp. 5214-5217. doi:10.1103/PhysRevLett.85.5214
[23] S. C. Srivastava, “Chemical Reactions Initiated by Ultrasonic Waves,” Nature, Vol. 182, No. 4627, 1958, p. 47. doi:10.1038/182047a0
[24] R. Katoh, H. Yokoi, S. Usuba, Y. Kakudate and S. Fuji- wara, “Sonochemicalpolymerization of Benzene Derivatives: The Site of the Reaction,” Ultrasonics Sonochemistry, Vol. 5, No. 1998, pp. 269-272. doi:10.1016/S1350-4177(98)00014-5
[25] F. Cataldo, “Ultrasound Induced Cracking and Pyrolysis of Some Aromatic and Naphthenic Hydrocarbons,” Ultrasonics Sonochemistry, Vol. 7, No. 1, 2000, pp. 35-43. doi:10.1016/S1350-4177(99)00019-X
[26] M. Y. Shul’ga, S. A. Baskakov, V. M. Martynenko, V. I. Petinov, V. F. Razumov and D. V. Shchur, “Effect of Ultrasound Treatment of C60 Solutions on the Crystalline Structure of Precipitated Fullerite,” Russian Journal of Physical Chemistry, Vol. 80, No. 4, 2006, pp. 654-658. doi:10.1134/S0036024406040315

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.