Share This Article:

Solvability of Inverse Eigenvalue Problem for Dense Singular Symmetric Matrices

Abstract Full-Text HTML XML Download Download as PDF (Size:120KB) PP. 14-19
DOI: 10.4236/apm.2013.31003    3,083 Downloads   5,168 Views   Citations

ABSTRACT

Given a list of real numbers ={λ1,, λn}, we determine the conditions under which will form the spectrum of a dense n × n singular symmetric matrix. Based on a solvability lemma, an algorithm to compute the elements of the matrix is derived for a given list and dependency parameters. Explicit computations are performed for n5 and r4 to illustrate the result.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Aidoo, K. Gyamfi, J. Ackora-Prah and F. Oduro, "Solvability of Inverse Eigenvalue Problem for Dense Singular Symmetric Matrices," Advances in Pure Mathematics, Vol. 3 No. 1, 2013, pp. 14-19. doi: 10.4236/apm.2013.31003.

References

[1] M. T. Chu and G. H. Golub, “Inverse Eigenvalue Problem: Theory, Algorithms and Applications,” Oxford University Press, Oxford, 2005. doi:10.1093/acprof:oso/9780198566649.001.0001
[2] R. L. Soto, “Realizability Criterion for Symmetric Nonnegative Inverse Eigenvalue Problem,” Linear Algebra and Its Applications, Vol. 416, No. 2-3, 2006, pp. 783- 794. doi:10.1016/j.laa.2005.12.021
[3] M. Fiedler, “Eigenvalues of Nonnegative Symmetric Matrices,” Linear Algebra and Its Applications, Vol. 9, No. 1, 1974, pp. 119-142. doi:10.1016/0024-3795(74)90031-7
[4] A. Borobia, “On Nonnegative Inverse Eigenvalue Problem,” Linear Algebra and Its Applications, Vol. 223/224, 1995, pp. 131-140. doi:10.1016/0024-3795(94)00343-C
[5] J. Wu, “On Open Problems of Nonnegative Inverse Eigenvalues Problem,” Advances in Pure Mathematics, Vol. 1, No. 4, 2011, pp. 128-132. doi:10.4236/apm.2011.14025
[6] R. Fernandes and C. M. da Focenca, “The Inverse Eigenvalue Problem for Hermitian Matrices,” Linear Multilinear Algebra, Vol. 57, No. 7, 2009, pp. 673-682. doi:10.1080/03081080802187870

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.