N-acetyltransferase 2: Slow, intermediate or fast? A booming question of the molecular epidemiology in cancer research

Abstract

Throughout history, humanity has referred to reactions occurring with food, plants and, recently, medicines or drugs. The increase in pulmonary tuberculosis cases and the availability of treatment showed that genetic human differences can interfere in the capacity to metabolize drugs. There are remarkable genetic polymorphisms of N-acetyltransferase 2 (NAT2) activity that have been associated with different levels of susceptibility to developing many kinds of cancers. This review considers the field as an open window for the application of molecular epidemiology tools that led to the development of pharmacogenomics. We cover historical data and the most recent knowledge about NAT2 genetic polymorphisms and its distribution in different populations, which is an important concept being incorporated in epidemiological studies of cancer risk. We present up to date information about these studies, including meta-analysis based on the NAT2 distribution in different types of cancer. A critical broad at advances in NAT2 research, high-lighting recent studies related to NAT2 alleles in cancer susceptibility. Although there are multifactorial aspects involved in cancer risk, the variability in NAT2 allelic frequency can be related to carcinogenesis through alterations in the metabolic rate after exposure to carcinogens.

Share and Cite:

Pietro, G. , Gadelha, S. , Sousa, S. , Melo, P. and Santos, F. (2012) N-acetyltransferase 2: Slow, intermediate or fast? A booming question of the molecular epidemiology in cancer research. Open Journal of Genetics, 2, 221-235. doi: 10.4236/ojgen.2012.24028.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Hein, D.W. (2002) Molecular genetics and function of NAT1 and NAT2: Role in aromatic amine metabolism and carcinogenesis. Mutation Research, 506, 65-77. doi:10.1016/S0027-5107(02)00153-7
[2] Hein, D.W. (2000) N-Acetyltransferase genetics and their role in predisposition to aromatic and heterocyclic amineinduced carcinogenesis. Toxicology Letters, 112, 349-356. doi:10.1016/S0378-4274(99)00226-X
[3] Dupret, J.M., Dairou, J., Atmane, N., et al. (2004) Pharmacogenetics, regulation and structural properties of the drug metabolizing enzymes arylamine N-acetyltransferases. Current Pharmacogenomics, 2, 333-338. doi:10.2174/1570160043377286
[4] Hughes, H., Biehl, J., Jones, A., et al. (1954) Metabolism of isoniazid in man as related to the occurrence of peripheral neuritis. American Review of Respiratory Disease, 70, 266-273.
[5] Estrada, L., Kanelakis, K.C., Levy, G.N., et al. (2000) Tissue-and gender-specific expression of N-acetyltransferase 2 (Nat2*) during development of the outbred mouse strain CD-1. Drug Metabolism and Disposition, 28, 139-146.
[6] Hein, D.W., McQueen, C.A., Grant, D.M., et al. (2000) Pharmacogenetics of the arylamine N-acetyltransferases: a symposium in honor of Wendell W. Weber. Drug Metabolism and Disposition, 28, 1425-1432.
[7] McKay, J.D., Hashibe, M., Hung, R.J., et al. (2008) Sequence variants of NAT1 and NAT2 and other xenometabolic genes and risk of lung and aerodigestive tract cancers in Central Europe. Cancer Epidemiology, Biomarkers & Prevention, 17, 141-147. doi:10.1158/1055-9965.EPI-07-0553
[8] Li, D., Jiao, L., Li, Y., et al. (2006) Polymorphisms of cytochrome P4501A2 and N-acetyltransferase genes, smoking, and risk of pancreatic cancer. Carcinogenesis, 27, 103-111. doi:10.1093/carcin/bgi171
[9] Bartsch, H., Nair, U., Risch, A., et al. (2000) Genetic polymorphism of CYP genes, alone or in combination, as a risk modifier of tobacco-related cancers. Cancer Epidemiology, Biomarkers & Prevention, 9, 3-28.
[10] Sim, E., Lack, N., Wang, C.J., et al. (2008) Arylamine N-acetyltransferases: Structural and functional implications of polymorphisms. Toxicology, 254, 170-183. doi:10.1016/j.tox.2008.08.022
[11] Grant, D.M. (2008) Structure of human arylamine N-acetyltransferases. Current Drug Metabolism, 9, 465-470. doi:10.2174/138920008784892029
[12] Blum, M., Grant, D.M., McBride, W., et al. (1990) Human arylamine N-acetyltransferase genes: Isolation, chromosomal localization, and functional expression. DNA and Cell Biology, 9, 193-203. doi:10.1089/dna.1990.9.193
[13] Grant, D.M., Blum, M., Demierre, A., et al. (1989) Nucleotide sequence of an intronless gene for a human arylamine N-acetyltransferase related to polymorphic drug acetylation. Nucleic Acids Research, 17, 3978. doi:10.1093/nar/17.10.3978
[14] Windmill, K.F., Gaedigk, A., Hall, P.M., et al. (2000) Localization of N-acetyltransferases NAT1 and NAT2 in human tissues. The Journal of Toxicological Sciences, 54, 19-29. doi:10.1093/toxsci/54.1.19
[15] Williams, J.A. and Phillips, D.H. (2000) Mammary expression of xenobiotic metabolizing enzymes and their potential role in breast cancer. Cancer Research, 60, 4667-4677.
[16] Vagena, E., Fakis, G. and Boukouvala, S. (2008) Arylamine N-acetyltransferases in prokaryotic and eukaryotic genomes: A survey of public databases. Current Drug Metabolism, 9, 628-660. doi:10.2174/138920008785821729
[17] Hein, D.W. (2009) N-acetyltransferase SNPs: Emerging concepts serve as a paradigm for understanding complexities of personalized medicine. Expert Opinion on Drug Metabolism & Toxicology, 5, 353-366. doi:10.1517/17425250902877698
[18] Hein, D.W., Sim, E., Boukouvala, S., Grant, D.M. and Minchin, R.F. (2010) Arylamine N-acetyltransferase gene nomenclature committee. http://louisville.edu/medschool/pharmacology/consensus-human-arylamine-n-acetyltransferase-gene-nomenclature
[19] Vatsis, K.P., Weber, W.W., Bell, D.A., et al. (1995) Nomenclature for N-Acetyltransferases. Pharmacogenetics, 5, 1-17. doi:10.1097/00008571-199502000-00001
[20] Ilett, K.F., Kadlubar, F.F. and Minchin, R.F. (1999) 1998 International meeting on the arylamine N-acetyltransferases: Synopsis of the workshop on nomenclature, biochemistry, molecular biology, interspecies comparisons, and role in human disease risk. Drug Metabolism and Disposition, 27, 957-959. http://www.pharm.uwa.edu.au/workshop/prog.html
[21] Ilett, K.F., Kadlubar, F.F. and Minchin, R.F. (1999) International meeting on the arylamine N-acetyltransferases: Synopsis of the Workshop on nomenclature, biochemistry, molecular biology, interspecies comparisons, and role in human disease risk. Drug Metabolism and Disposition, 27, 957-959.
[22] Rodrigues-Lima, F., Bl?meke, B., Sim, E., et al. (2002) NAT from bugs to brains. An overview of the 2nd International Workshop on the arylamine N-acetyltransferases. The Pharmacogenomics Journal, 2, 152-155. doi:10.1038/sj.tpj.6500114
[23] Boukouvala, S., Westwood, I.M., Butcher, N.J., et al. (2008) Current trends in N-acetyltransferase research arising from the 2007 International NAT workshop. Pharmacogenomics, 9, 765-771. doi:10.2217/14622416.9.6.765
[24] Boukouvala, S. and Fakis, G. (2008) The database of nonhuman N-acetyltransferases (NATs). http://www.mbg.duth.gr/non-humanNATnomenclature
[25] Hein, D.W., Boukouvala, S., Grant, D.M., et al. (2008) Changes in consensus arylamine N-acetyltransferase gene nomenclature. Pharmacogenet Genomics, 18, 367-368. doi:10.1097/FPC.0b013e3282f60db0
[26] Baumgartner, K.B., Schlierf, T.J., Yang, D., et al. (2009) N-acetyltransferase 2 genotype modification of active cigarette smoking on breast cancer risk among hispanic and non-hispanic white women. The Journal of Toxicological Sciences, 112, 211-220. doi:10.1093/toxsci/kfp199
[27] Lin, H.J., Han, C.Y., Lin, B.K., et al. (1994) Ethnic distribution of slow acetylator mutations in the polymerphic N-acetyltransferase (NAT2) gene. Pharmacogenetics, 4, 125-134. doi:10.1097/00008571-199406000-00003
[28] Patin, E., Barreiro, L.B., Sabeti, P.C., et al. (2006) Deciphering the ancient and complex evolutionary history of human arylamine N-acetyltransferase genes. The American Journal of Human Genetics, 78, 423-436. doi:10.1086/500614
[29] Gajecka, M., Rydzanicz, M., Jaskula-Sztul, R., et al. (2005) CYP1A1, CYP2D6, CYP2E1, NAT2, GSTM1 and GSTT1 polymorphisms or their combinations are associated with the increased risk of the laryngeal squamous cell carcinoma. Mutation Research, 574, 112-123. doi:10.1016/j.mrfmmm.2005.01.027
[30] Okkels, H., Sigsgaard, T., Wolf, H., et al. (1997) Arylamine N-acetyltransferase 1 (NAT1) and 2 (NAT2) polymorphisms in susceptibility to bladder cancer: The influence of smoking. Cancer Epidemiology, Biomarkers & Prevention, 6, 225-231.
[31] Bell, D.A., Taylor, J.A., Butler, M.A., et al. (1993) Short communication: Genotype/phenotype discordance for human arylamine N-acetyltransferase (NAT2) reveals a new slow-acetylator allele common in African-americans. Carcinogenesis, 14, 1689-1692. doi:10.1093/carcin/14.8.1689
[32] Butler, L.M., Millikan, R.C., Sinha, R., et al. (2008) Modification by N-acetyltransferase 1 genotype on the association between dietary heterocyclic amines and colon cancer in a multiethnic study. Mutation Research, 638, 162-174. doi:10.1016/j.mrfmmm.2007.10.002
[33] Berg, N.D., Rasmussen, H.B., Linneberg, A., et al. (2010) Genetic susceptibility factors for multiple chemical sensitivity revisited. International Journal of Hygiene and Environmental Health, 213, 131-139. doi:10.1016/j.ijheh.2010.02.001
[34] Cascorbi, I., Drakoulis, N., Brockmoller, J., et al. (1995) Arylamine N-acetylation (NAT2) mutations and their allelic linkage in unrelated caucasian individuals: Correlation with phenotypic activity. The American Journal of Human Genetics, 57, 581-592.
[35] Agundez, J.A., Olivera, M., Martinez, C., et al. (1996) Identification and prevalence study of 17 allelic variants of the human NAT2 gene in a white population. Pharmacogenetics, 6, 423-428. doi:10.1097/00008571-199610000-00006
[36] Lemos, M.C. and Regaterio, F.J. (1998) N-acetyltransferase genotypes in the Portuguese population. Pharmacogenetics, 8, 561-564. doi:10.1097/00008571-199812000-00013
[37] Johnson, N., Bell, P., Jonovska, V., et al. (2004) NAT gene polymorphisms and susceptibility to Alzheimer’s disease: Identification of a novel NAT1 allelic variant. BMC Medical Genetics, 5, 6-14. doi:10.1186/1471-2350-5-6
[38] Smith, C.A., Wadelius, M., Gough, A.C., et al. (1997) A simplified assay for the arylamine N-acetyltransferase 2 polymorphism validated by phenotyping with izonoazid. Journal of Medical Genetics, 34, 758-760. doi:10.1097/00008571-199702000-00010
[39] SNP500Cancer Database. http://snp500cancer.nci.nih.gov/home.cfm
[40] Lee, S.Y., Lee, K.A., Ki, C.S., et al. (2002) Complete sequencing of a genetic polymorphism in NAT2 in the Korean population. Clinical Chemistry, 48, 775-777.
[41] Dai, Y., Leng, S., Li, L., et al. (2009) Effects of genetic polymorphisms of N-acetyltransferase on trichloroethylene-induced hypersensitivity dermatitis among exposed workers. Industrial Health, 47, 479-486. doi:10.2486/indhealth.47.479
[42] Xie, H.G., Xu, Z.H., Yang, D.S., et al. (1997) Metaanalysis of phenotype and genotype of NAT2 deficiency in Chinese populations. Pharmacogenetics, 7, 503-514. doi:10.1097/00008571-199712000-00009
[43] Sekine, A., Saito, S., Lida, A., et al. (2001) Identification of single-nucleotide polymorphisms (SNPs) of human N-acetyltransferase genes NAT1, NAT2, AANAT, ARD1 and L1CAM in the Japanese population. Journal of Human Genetics, 46, 314-319. doi:10.1007/s100380170065
[44] Kukongviriyapan, V., Prawan, A., Tassaneyakul, W., et al. (2003) Arylamine N-acetyltransferase-2 genotypes in the Thai population. British Journal of Clinical Pharmacology, 55, 278-281. doi:10.1046/j.1365-2125.2003.01766.x
[45] Rouissi, K., Ouerhani, S., Marrakchi, R., et al. (2009) Combined effect of smoking and inherited polymorphisms in arylamine N-acetyltransferase 2, glutathione S-transferases M1 and T1 on bladder cancer in a Tunisian population. Cancer Genetics and Cytogenetics, 190, 101-107. doi:10.1016/j.cancergencyto.2009.01.007
[46] Bakayev, V.V., Mohammadi, F., Bahadori, M., et al. (2004) Arylamine N-acetyltransferase 2 slow acetylator polymorphisms in unrelated Iranian individuals. European Journal of Clinical Pharmacology, 60, 467-471. doi:10.1007/s00228-004-0799-z
[47] Magalon, H., Patin, E., Austerlitz, F., et al. (2008) Population genetic diversity of the NAT2 gene supports a role of acetylation in human adaptation to farming in Central Asia. European Journal of Human Genetics, 16, 243-251. doi:10.1038/sj.ejhg.5201963
[48] Torkaman-Boutorabi, A., Hoormand, M., Naghdi, N., et al. (2007) Genotype and allele frequencies of N-acetyltransferase 2 and glutathione S-transferase in the Iranian population. Clinical and Experimental Pharmacology and Physiology, 34, 1207-1211. doi:10.1111/j.1440-1681.2007.04753.x
[49] Aynacioglu, A.S., Cascorbi, I., Mrozikiewicz, P.M., et al. (1997) Arylamine Nacetyltransferase (NAT2) genotypes in Turkish population. Pharmacogenetics, 7, 327-231. doi:10.1097/00008571-199708000-00008
[50] Hamdy, S.I., Hiratsuka, M., Narahara, K., et al. (2003) Genotype and allele frequencies of TPMT, NAT2, GST, SULT1A1 and MDR-1 in the Egyptian population. British Journal of Clinical Pharmacology, 55, 560-569. doi:10.1046/j.1365-2125.2003.01786.x
[51] Woolhouse, N.M., Qureshi, M.M., Bastaki, S.M., et al. (1997) Polymorphic N-acetyltransferase (NAT2) genotypeing of Emiratis. Pharmacogenetics, 7, 73-82. doi:10.1097/00008571-199702000-00010
[52] Delomenie, C., Sica, L., Grant, D.M., et al. (1996) Genotyping of the polymorphic N-acetyltransferase (NAT2*) gene locus in two native African populations. Pharmacogenetics, 6, 177-185. doi:10.1097/00008571-199604000-00004
[53] Sabbagh, A., Langaney, A., Darlu, P., et al. (2008) Worldwide distribution of NAT2 diversity: Implications for NAT2 evolutionary history. BMC Medical Genetics, 9, 1-14. doi:10.1186/1471-2156-9-21
[54] Jorge-Nebert, L.F., Eichelbaum, M., Griese, E.U., et al. (2002) Analysis of six SNPs of NAT2 in Ngawbe and Embera amerindians of Panama and determination of the Embera acetylation phenotype using caffeine. Pharmacogenetics, 12, 39-48. doi:10.1097/00008571-200201000-00006
[55] Fuselli, S., Gilman, R.H., Chanock, S.J., et al. (2007) Analysis of nucleotide diversity of NAT2 coding region reveals homogeneity across native American populations and high intra-population diversity. The Pharmacogenomics Journal, 7, 144-152. doi:10.1038/sj.tpj.6500407
[56] Teixeira, R.L., Miranda, A.B., Pacheco, A.G., et al. (2007) Genetic profile of the arylamine N-acetyltransferase 2 coding gene among individuals from two different regions of Brazil. Mutation Research, 624, 31-40. doi:10.1016/j.mrfmmm.2007.03.015
[57] Talbot, J., Magno, L.A.V., Santana, C.V.N., Sousa, S.M.B., Melo, P.R.S., Correa, R.X., Di Pietro, G. and Rios-Santos, F. (2010) Interethnic diversity of NAT2 polymorphisms in Brazilian admixed populations. BMC Genetics, 11, 87-96. doi:10.1186/1471-2156-11-87
[58] Garcia-Martin, E. (2008) Interethnic and intraethnic variability of NAT2 single nucleotide polymorphisms. Current Drug Metabolism, 9, 487-497. doi:10.2174/138920008784892155
[59] Turesky, R.J., Bendaly, J., Yasa, I., et al. (2009) The acetilation de NAT2 genótipo sobre Mutagênese e adutos de DNA a partir de 2-amino-9H-pirido [2,3-b] indol. Chemical Research in Toxicology, 22, 726-733. doi:10.1021/tx800473w
[60] Di Pietro, G., Magno, L.A.M. and Rios-Santos, F. (2010) Glutathione S-transferases: An overview in cancer research. Expert Opinion on Drug Metabolism & Toxicologyl, 6, 153-70. doi:10.1517/17425250903427980
[61] Vineis, P., Marinelli, D., Autrup, H., et al. (2001) Current smoking, occupation, N-acetyltransferase-2 and bladder cancer; a pooled analysis of genotype-based studies. Cancer Epidemiology, Biomarkers & Prevention, 10, 1249-1252.
[62] Jasku?a-Sztul, R., Soko?owski, W., Gajecka, M., et al. (2001) Association of arylamine N-acetyltransferase (NAT1 and NAT2) genotypes with urinary bladder cancer risk. Journal of Applied Genetics, 42, 223-231.
[63] Giannakopoulos, X., Charalabopoulos, K., Baltogiannis, D., et al. (2002) The role of N-acetyltransferase-2 and glutathione S-transferase on the risk and aggressiveness of bladder cancer. Anticancer Research, 22, 3801-3804.
[64] Schroeder, J.C., Conway, K., Li, Y., et al. (2003) P53 mutations in bladder cancer: Evidence for exogenous versus endogenous risk factors. Cancer Research, 63, 7530-7538.
[65] García-Closas, M., Malats, N., Silverman, D., et al. (2005) NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: results from the Spanish Bladder Cancer Study and meta-analyses. Lancet, 366, 649-59. doi:10.1016/S0140-6736(05)67137-1
[66] Gu, J., Liang, D., Wang, Y., et al. (2005) Effects of N-acetyltransferase 1 and 2 polymorphisms on bladder cancer risk in caucasians. Mutation Research, 581, 97-104. doi:10.1016/j.mrgentox.2004.11.012
[67] Dong, L.M., Potter, J.D., White, E., et al. (2008) Genetic susceptibility to cancer: The role of polymorphisms in candidate genes. JAMA, 299, 2423-2436. doi:10.1001/jama.299.20.2423
[68] Song, D.K., Xing, D.L., Zhang, L.R., et al. (2009) Association of NAT2, GSTM1, GSTT1, CYP2A6, and CYP2A13 gene polymorphisms with susceptibility and clinicopathologic characteristics of bladder cancer in Central China. Cancer Detection and Prevention Journal, 32, 416-423. doi:10.1016/j.cdp.2009.02.003
[69] Klim?áková, L., Habalová, V., Sivoňová, M., et al. (2010) Effect of NAT2 gene polymorphism on bladder cancer risk in Slovak population. Molecular Biology Reports, 38, 1287-1293
[70] García-Closas, M., Hein, D.W., Silverman, D., et al. (2011) A single nucleotide polymorphism tags variation in the arylamine N-acetyltransferase 2 phenotype in populations of European background. Pharmacogenet Genomics, 21, 231-236.
[71] Frazier, M.L., O’Donnell, F.T., Kong, S., et al. (2001) bAge-associated risk of cancer among individuals with N-acetyltransferase 2 (NAT2) mutations and mutations in DNA mismatch repair genes. Cancer Research, 61, 1269-1271.
[72] Shibuta, J., Eto, T., Kataoka, A., et al. (2001) Genetic polymorphism of N-acetyltransferase 2 in patients with esophageal cancer. The American Journal of Gastroenterology, 96, 3419-3424. doi:10.1111/j.1572-0241.2001.05276.x
[73] Hahn, M., Hagedorn, G., Kuhlisch, E., et al. (2002) Genetic polymorphisms of drug-metabolizing enzymes and susceptibility to oral cavity cancer. Oral Oncology, 38, 486-490. doi:10.1016/S1368-8375(01)00086-0
[74] Varzim, G., Monteiro, E., Silva, R., et al. (2002) Polymorphisms of arylamine N-acetyltransferase (NAT1 and NAT2) and larynx cancer susceptibility. ORL, 64, 206-212. doi:10.1159/000058026
[75] Unal, M., Tamer, L., Akba?, Y., et al. (2005) Genetic polymorphism of N-acetyltransferase 2 in the susceptibility to laryngeal squamous cell carcinoma. Head Neck, 27, 1056-1060. doi:10.1002/hed.20284
[76] Jain, M., Kumar, S., Lal, P., et al. (2007) Association of genetic polymorphisms of N-acetyltransferase 2 and susceptibility to esophageal cancer in north Indian population. Cancer Investigation, 25, 340-346. doi:10.1080/07357900701358074
[77] Boccia, S., Cadoni, G., Sayed-Tabatabaei, F.A., et al. (2008) CYP1A1, CYP2E1, GSTM1, GSTT1, EPHX1 exons 3 and 4, and NAT2 polymorphisms, smoking, consumption of alcohol and fruit and vegetables and risk of head and neck cancer. Journal of Cancer Research and Clinical Oncology, 134, 93-100. doi:10.1007/s00432-007-0254-5
[78] Malik, M.A., Upadhyay, R., Modi, D.R., et al. (2009) Association of NAT2 gene polymorphisms with susceptibility to esophageal and gastric cancers in the Kashmir Valley. Archives of Medical Research, 40, 416-423. doi:10.1016/j.arcmed.2009.06.009
[79] Boccia, S., Sayed-Tabatabaei, F.A., Persiani, R., et al. (2007) Polymorphisms in metabolic genes, their combination and interaction with tobacco smoke and alcohol consumption and risk of gastric cancer: A case-control study in an Italian population. BMC Cancer, 7, 206-214. doi:10.1186/1471-2407-7-206
[80] Zupa, A., Sgambato, A., Bianchino, G., et al. (2009) GSTM1 and NAT2 polymorphisms and colon, lung and bladder cancer risk: A case-control study. Anticancer Research, 29, 1709-1714.
[81] Wikman, H., Thiel, S., J?ger, B., et al. (2001) Relevance of N-acetyltransferase 1 and 2 (NAT1, NAT2) genetic polymorphisms in non-small cell lung cancer susceptibility. Pharmacogenetics, 11, 157-168. doi:10.1097/00008571-200103000-00006
[82] Hou, S.M., F?lt, S., Yang, K., et al. (2001) Differential interactions between GSTM1 and NAT2 genotypes on aromatic DNA adduct level and HPRT mutant frequency in lung cancer patients and population controls. Cancer Epidemiology, Biomarkers & Prevention, 10, 133-140.
[83] Habalová, V., Salagovic, J., Kalina, I., et al. (2005) A pilot study testing the genetic polymorphism of N-acetyltransferase 2 as a risk factor in lung cancer. Neoplasma, 52, 364-368.
[84] Osawa, Y., Osawa, K.K., Miyaishi, A., et al. (2007) NAT2 and CYP1A2 polymorphisms and lung cancer risk in relation to smoking status. Asian Pacific Journal of Cancer Prevention, 8, 103-108.
[85] Sobti, R.C., Kaur, P., Kaur, S., et al. (2009) Impact of interaction of polymorphic forms of p53 codon 72 and N-acetylation gene (NAT2) on the risk of lung cancer in the North Indian population. DNA and Cell Biology, 28, 443-449. doi:10.1089/dna.2008.0797
[86] Lee, M.S., Su, L. and Christiani, D.C. (2010) Synergistic effects of NAT2 slow and GSTM1 null genotypes on carcinogen DNA damage in the lung. Cancer Epidemiology, Biomarkers & Prevention, 19, 1492-1497. doi:10.1158/1055-9965.EPI-09-1195
[87] Firozi, P.F., Bondy, M.L., Sahin, A.A., et al. (2002) Aromatic DNA adducts and polymorphisms of CYP1A1, NAT2, and GSTM1 in breast cancer. Carcinogenesis, 23, 301-306. doi:10.1093/carcin/23.2.301
[88] Egan, K.M., Newcomb, P.A., Titus-Ernstoff, L., et al. (2003) Association of NAT2 and smoking in relation to breast cancer incidence in a population-based case-control study (United States). Cancer Causes Control, 14, 43-51. doi:10.1023/A:1022517506689
[89] Alberg, A.J., Daudt, A., Huang, H.Y., et al. (2004) N-acetyltransferase 2 (NAT2) genotypes, cigarette smoking, and the risk of breast cancer. Cancer Epidemiology, Biomarkers & Prevention, 28, 187-193. doi:10.1016/j.cdp.2004.04.001
[90] Sillanp??, P., Hirvonen, A., Kataja, V., et al. (2005) NAT2 slow acetylator genotype as an important modifier of breast cancer risk. International Journal of Cancer, 114, 579-584. doi:10.1002/ijc.20677
[91] Khedhaier, A., Hassen, E., Bouaouina, N., et al. (2008) Implication of xenobiotic metabolizing enzyme gene (CYP2E1, CYP2C19, CYP2D6, mEH and NAT2) polymorphisms in breast carcinoma. BMC Cancer, 8, 109. doi:10.1186/1471-2407-8-109
[92] Zhang, J., Qiu, L.X., Wang, Z.H., et al. (2010) NAT2 polymorphisms combining with smoking associated with breast cancer susceptibility: A meta-analysis. Breast Cancer Research and Treatment, 123, 877-883. doi:10.1007/s10549-010-0807-1
[93] Hein, D.W., Leff, M.A., Ishibe, N., et al. (2002) Association of prostate cancer with rapid N-acetyltransferase 1 (NAT1*10) in combination with slow N-acetyltransferase 2 acetylator genotypes in a pilot case-control study. Environmental and Molecular Mutagenesis, 40, 161-167. doi:10.1002/em.10103
[94] Hamasaki, T., Inatomi, H., Katoh, T., et al. (2003) N-acetyltransferase-2 gene polymorphism as a possible biomarker for prostate cancer in Japanese men. International Journal of Urology, 10, 167-173. doi:10.1046/j.1442-2042.2003.00586.x
[95] Gong, C., Hu, X., Gao, Y., et al. (2010) A meta-analysis of the NAT1 and NAT2 polymorphisms and prostate cancer: A huge review. Medical Oncology, 28, 365-367.
[96] Matullo, G., Guarrera, S., Carturan, S., et al. (2001) DNA repair gene polymorphisms, bulky DNA adducts in white blood cells and bladder cancer: In a case-control study. International Journal of Cancer, 92, 62-67. doi:10.1002/ijc.1228
[97] Golka, K., Weistenhofer, W., Jedrusik, P., et al. (2001) N-acetyltransferase 2 phenotype in painters with bladder cancer and controls. Annals Academy of Medicine Singapore, 30, 464-467.
[98] Cascorbi, I., Roots, I. and Brockm?ller, J. (2001) Association of NAT1 and NAT2 polymorphisms to urinary bladder cancer: significantly reduced risk in subjects with NAT1*10. Cancer Research, 61, 5051-5056.
[99] Hung, R.J., Boffetta, P., Brennan, P., et al. (2004) GST, NAT, SULT1A1, CYP1B1 genetic polymorphisms, interactions with environmental exposures and bladder cancer risk in a high-risk population. International Journal of Cancer, 110, 598-604. doi:10.1002/ijc.20157
[100] Kellen, E., Zeegers, M., Paulussen, A., et al. (2007) Does occupational exposure to PAHs, diesel and aromatic amines interact with smoking and metabolic genetic polymorphisms to increase the risk on bladder cancer? The Belgian case control study on bladder cancer risk. Cancer Letters, 245, 51-60. doi:10.1016/j.canlet.2005.12.025
[101] Sanderson, S., Salanti, G. and Higgins, J. (2007) Joint effects of the N-acetyltransferase 1 and 2 (NAT1 and NAT2) genes and smoking on bladder carcinogenesis: A literature-based systematic HuGE review and evidence synthesis. American Journal of Epidemiology, 166, 741-751. doi:10.1093/aje/kwm167
[102] Yuan, J.M., Chan, K.K., Coetzee, G.A., et al. (2008) Genetic determinants in the metabolism of bladder carcinogens in relation to risk of bladder cancer. Carcinogenesis, 29, 1386-1393. doi:10.1093/carcin/bgn136
[103] Fontana, L., Delort, L., Joumard, L., et al. (2009) Genetic polymorphisms in CYP1A1, CYP1B1, COMT, GSTP1 and NAT2 genes and association with bladder cancer risk in a French cohort. Anticancer Research, 29, 1631-1635.
[104] Tao, L., Xiang, Y.B., Wang, R., et al. (2010) Environmental Tobacco Smoke in Relation to Bladder Cancer Risk—The Shanghai Bladder Cancer Study. Cancer Epidemiology, Biomarkers & Prevention, 19, 3087-3095. doi:10.1158/1055-9965.EPI-10-0823
[105] Moore, L.E., Baris, D.R., Figueroa, J.D., et al. (2010) GSTM1 null and NAT2 slow acetylation genotypes, smoking intensity and bladder cancer risk: results from the New England bladder cancer study and NAT2 meta-analysis. Carcinogenesis, 32, 182-189. doi:10.1093/carcin/bgq223
[106] N?thlings, U., Yamamoto, J.F., Wilkens, L.R., et al. (2009) Meat and heterocyclic amine intake, smoking, NAT1 and NAT2 polymorphisms, and colorectal cancer risk in the multiethnic cohort study. Cancer Epidemiology, Biomarkers & Prevention, 18, 2098-2106. doi:10.1158/1055-9965.EPI-08-1218
[107] Cotterchio, M., Boucher, B.A., Manno, M., et al. (2008) Red meat intake, doneness, polymorphisms in genes that encode carcinogen-metabolizing enzymes, and colorectal cancer risk. Cancer Epidemiology, Biomarkers & Prevention, 17, 3098-3107. doi:10.1158/1055-9965.EPI-08-0341
[108] Tiemersma, E.W., Voskuil, D.W., Bunschoten, A., et al. (2004) Risk of colorectal adenomas in relation to meat consumption, meat preparation, and genetic susceptibility in a Dutch population. Cancer Causes Control, 15, 225-236. doi:10.1023/B:CACO.0000024263.44973.92
[109] Cleary, S.P., Cotterchio, M., Shi, E., et al. (2010) Cigarette smoking, genetic variants in carcinogen-metabolizing enzymes, and colorectal cancer risk. American Journal of Epidemiology, 172, 1003-1014. doi:10.1093/aje/kwq245
[110] Silva, T.D., Felipe, A.V., Lima, J.M., Forones, N.M., et al. (2011) N-Acetyltransferase 2 genetic polymorphisms and risk of colorectal cancer. World Journal of Gastroenterology, 17, 760-765. doi:10.3748/wjg.v17.i6.760
[111] Zhang, Y.W., Eom, S.Y., Kim, Y.D., et al. (2009) Effects of dietary factors and the NAT2 acetylator status on gastric cancer in Koreans.. International Journal of Cancer, 125, 139-145. doi:10.1002/ijc.24328
[112] Krajinovic, M., Ghadirian, P., Richer, C., et al. (2001) Genetic susceptibility to breast cancer in French-Canadians: Role of carcinogen-metabolizing enzymes and gene-environment interactions. International Journal of Cancer, 92, 220-225. doi:10.1002/1097-0215(200102)9999:9999<::AID-IJC1184>3.0.CO;2-H
[113] Chang-Claude, J., Kropp, S., J?ger, B., et al. (2002) Differential effect of NAT2 on the association between active and passive smoke exposure and breast cancer risk. Cancer Epidemiology, Biomarkers & Prevention, 11, 698-704.
[114] Conlon, M.S., Johnson, K.C., Bewick, M.A., et al. (2010) Smoking (active and passive), N-acetyltransferase 2, and risk of breast cancer. Cancer Epidemiology, 34, 142-149. doi:10.1016/j.canep.2010.02.001
[115] Stephenson, N., Beckmann, L. and Chang-Claude, J. (2010) Carcinogen metabolism, cigarette smoking, and breast cancer risk: A Bayes model averaging approach. Epidemiologic Perspectives & Innovations, 7, 1-9. doi:10.1186/1742-5573-7-10
[116] Lu, C.M., Chung, M.C., Huang, C.H., et al. (2005) Interaction effect in bladder cancer between N-acetyltransferase 2 genotype and alcohol drinking. Urologia Internationalis, 75, 360-364. doi:10.1159/000089175
[117] Covolo, L., Placidi, D., Gelatti, U., et al. (2008) Bladder cancer, GSTs, NAT1, NAT2, SULT1A1, XRCC1, XRCC3, XPD genetic polymorphisms and coffee consumption: A case-control study. European Journal of Epidemiology, 23, 355-362. doi:10.1007/s10654-008-9238-2
[118] Villanueva, C.M., Silverman, D.T., Murta-Nascimento, C., et al. (2009) Coffee consumption, genetic susceptibility and bladder cancer risk. Cancer Causes Control, 20, 121-127. doi:10.1007/s10552-008-9226-6
[119] Castelao, J.E., Yuan, J.M., Gago-Dominguez, M., et al. (2004) Carotenoids/vitamin C and smoking-related bladder cancer. International Journal of Cancer, 110, 417-423. doi:10.1002/ijc.20104
[120] Zhao, H., Lin, J., Grossman, H.B., et al. (2007) Dietary isothiocyanates, GSTM1, GSTT1, NAT2 polymorphisms and bladder cancer risk. International Journal of Cancer, 120, 2208-2213. doi:10.1002/ijc.22549
[121] Lin, J., Kamat, A., Gu, J., et al. (2009) Dietary intake of vegetables and fruits and the modification effects of GSTM1 and NAT2 genotypes on bladder cancer risk. Cancer Epidemiology, Biomarkers & Prevention, 18, 2090-2097. doi:10.1158/1055-9965.EPI-08-1174
[122] Kellen, E., Zeegers, M., Paulussen, A., et al. (2006) Fruit consumption reduces the effect of smoking on bladder cancer risk. The Belgian case control study on bladder cancer. International Journal of Cancer, 118, 2572-2578. doi:10.1002/ijc.21714
[123] Kiss, I., Németh, A., Bogner, B., et al. (2004) Polymorphisms of glutathione-S-transferase and arylamine N-acetyltransferase enzymes and susceptibility to colorectal cancer. Anticancer Research, 24, 3965-3970.
[124] Osian, G., Procopciuc, L. and Vlad, L. (2006) NAT2 gene polymorphism and sporadic colorectal cancer: prevalence, tumor stage and prognosis. A preliminary study in 70 patients. Journal of Gastrointestinal and Liver Diseases, 15, 347-353.
[125] Tamer, L., Ercan, B., Ates, N.A., et al., (2006) N-acetyltransferase 2 gene polymorphism in patients with colorectal carcinoma. Cell Biochemistry and Function, 24, 131-135. doi:10.1002/cbf.1191
[126] Yoshida, K., Osawa, K., Kasahara, M., et al. (2007) Association of CYP1A1, CYP1A2, GSTM1 and NAT2 gene polymorphisms with colorectal cancer and smoking. Asian Pacific Journal of Cancer Prevention, 8, 438-444.
[127] Huang, C.C., Chien, W.P., Wong, R.H., et al. (2009) NAT2 fast acetylator genotype and MGMT promoter methylation may contribute to gender difference in K-RAS mutation occurrence in Taiwanese colorectal cancer. Environmental and Molecular Mutagenesis, 50, 127-133. doi:10.1002/em.20444
[128] Ye, Z. and Parry, J.M. (2002) Meta-analysis of 20 case-control studies on the N-acetyltransferase 2 acetylation status and colorectal cancer risk. Medical Science Monitor, 8, 558-565.
[129] Le Marchand, L., Hankin, J.H., Wilkens, L.R., et al. (2001) Combined effects of well-done red meat, smoking, and rapid N-acetyltransferase 2 and CYP1A2 phenotypes in increasing colorectal cancer risk. Cancer Epidemiology, Biomarkers & Prevention, 10, 1259-1266.
[130] Slattery, M.L., Curtin, K., Ma, K., et al. (2002) GSTM-1 and NAT2 and genetic alterations in colon tumors. Cancer Causes Control, 13, 527-534. doi:10.1023/A:1016376016716
[131] Chan, A.T., Tranah, G.J., Giovannucci, E.L., et al. (2005) Prospective study of N-acetyltransferase-2 genotypes, meat intake, smoking and risk of colorectal cancer. International Journal of Cancer, 115, 648-652. doi:10.1002/ijc.20890
[132] Barrett, J.H., Smith, G., Waxman, R., et al. (2003) Investigation of interaction between N-acetyltransferase 2 and heterocyclic amines as potential risk factors for colorectal cancer. Carcinogenesis, 24, 275-282. doi:10.1093/carcin/24.2.275
[133] Lilla, C., Verla-Tebit, E., Risch, A., et al. (2006) Effect of NAT1 and NAT2 genetic polymorphisms on colorectal cancer risk associated with exposure to tobacco smoke and meat consumption. Cancer Epidemiology, Biomarkers & Prevention, 15, 99-107. doi:10.1158/1055-9965.EPI-05-0618
[134] Ognjanovic, S., Yamamoto, J., Maskarinec, G., et al. (2006) NAT2, meat consumption and colorectal cancer incidence: An ecological study among 27 countries. Cancer Causes Control, 17, 1175-1182. doi:10.1007/s10552-006-0061-3
[135] Goode, E.L., Potter, J.D., Bamlet, W.R., et al. (2007) Inherited variation in carcinogen-metabolizing enzymes and risk of colorectal polyps. Carcinogenesis, 28, 328-341. doi:10.1093/carcin/bgl135
[136] S?rensen, M., Autrup, H., Olsen, A., et al. (2008) Prospective study of NAT1 and NAT2 polymorphisms, tobacco smoking and meat consumption and risk of colorectal cancer. Cancer Letters, 266, 186-193. doi:10.1016/j.canlet.2008.02.046
[137] Gajecka, M., Rydzanicz, M., Jaskula-Sztul, R., et al. (2005) CYP1A1, CYP2D6, CYP2E1, NAT2, GSTM1 and GSTT1 polymorphisms or their combinations are associated with the increased risk of the laryngeal squamous cell carcinoma. Mutation Research, 574, 112-123. doi:10.1016/j.mrfmmm.2005.01.027
[138] Marques, C.F.S., Koifman, S., Koifman, R.J., et al. (2006) Influence of CYP1A1, CYP2E1, GSTM3 and NAT2 genetic polymorphisms in oral cancer susceptibility: Results from a case-control study in Rio de Janeiro. Oral Oncology, 42, 632-637. doi:10.1016/j.oraloncology.2005.11.003
[139] Buch, S.C., Nazar-Stewart, V., Weissfeld, J.L., et al. (2008) Case-control study of oral and oropharyngeal cancer in whites and genetic variation in eight metabolic enzymes. Head Neck, 30, 1139-1147. doi:10.1002/hed.20867
[140] Demokan, S., Suoglu, Y., G?zeler, M., et al. (2010) N-acetyltransferase 1 and 2 gene sequence variants and risk of head and neck cancer. Molecular Biology Reports, 37, 3217-3226. doi:10.1007/s11033-009-9905-8
[141] Chatzimichalis, M., Xenellis, J., Tzagaroulakis, A., et al. (2010) GSTT1, GSTM1, GSTM3 and NAT2 polymorphisms in laryngeal squamous cell carcinoma in a Greek population. The Journal of Laryngology & Otology, 124, 318-323. doi:10.1017/S002221510999154X
[142] Zhou, W., Liu, G., Thurston, S.W., et al. (2002) Genetic polymorphisms in N-acetyltransferase-2 and microsomal epoxide hydrolase, cumulative cigarette smoking, and lung cancer. Cancer Epidemiology, Biomarkers & Prevention, 11, 15-21.
[143] Lee, C.N., Yu, M.C., Bai, K.J., et al. (2009) NAT2 fast acetylator genotypes are associated with an increased risk for lung cancer with wildtype epidermal growth factor receptors in Taiwan. Lung Cancer, 64, 9-12. doi:10.1016/j.lungcan.2008.07.001
[144] Mittal, R.D., Srivastava, D.S.L. and Mandhani, A. (2004) NAT2 gene polymorphism in bladder cancer: A study from north India. International Brazilian Journal of Urology, 30, 279-288. doi:10.1590/S1677-55382004000400003
[145] Kontani, K., Kawakami, M., Nakajima, T., et al. (2001) Tobacco use and occupational exposure to carcinogens, but not N-acetyltransferase 2 genotypes are major risk factors for bladder cancer in the Japanese. Urological Research, 29, 199-204. doi:10.1007/s002400100182
[146] Ma, Q.W., Lin, G.F., Chen, J.G., et al. (2004) Polymorphism of N-acetyltransferase 2 (NAT2) gene polymerphism in Shanghai population: Occupational and nonoccupational bladder cancer patient groups. Biomedical and Environmental Sciences, 17, 291-298.
[147] McGrath, M., Michaud, D. and De Vivo, I. (2006) Polymorphisms in GSTT1, GSTM1, NAT1 and NAT2 genes and bladder cancer risk in men and women. BMC Cancer, 6, 239-247. doi:10.1186/1471-2407-6-239
[148] Ishibe, N., Sinha, R., Hein, D.W., et al. (2002) Genetic polymorphisms in heterocyclic amine metabolism and risk of colorectal adenomas. Pharmacogenetics, 12, 145-150. doi:10.1097/00008571-200203000-00008
[149] Sachse, C., Smith, G., Wilkie, M.J.V., et al. (2002) A pharmacogenetic study to investigate the role of dietary carcinogens in the etiology of colorectal cancer. Carcinogenesis, 23, 1839-1849. doi:10.1093/carcin/23.11.1839
[150] Prawan, A., Kukongviriyapan, V., Tassaneeyakul, W., et al. (2005) Association between genetic polymorphisms of CYP1A2, arylamine N-acetyltransferase 1 and 2 and susceptibility to cholangiocarcinoma. European Journal of Cancer Prevention, 14, 245-250. doi:10.1097/00008469-200506000-00008
[151] Pistorius, S., G?rgens, H., Krüger, S., et al. (2006) N-acetyltransferase (NAT) 2 acetylator status and age of onset in patients with hereditary nonpolyposis colorectal cancer (HNPCC). Cancer Letters, 241, 150-157. doi:10.1016/j.canlet.2005.10.018
[152] Borlak, J. and Reamon-Buettner, S.M. (2006) N-acetyltransferase 2 (NAT2) gene polymorphisms in colon and lung cancer patients. BMC Medical Genetics, 7, 58-67. doi:10.1186/1471-2350-7-58
[153] Talseth, B.A., Meldrum, C., Suchy, J., et al. (2006) Genetic polymorphisms in xenobiotic clearance genes and their influence on disease expression in hereditary nonpolyposis colorectal cancer patients. Cancer Epidemiology, Biomarkers & Prevention, 15, 2307-2310. doi:10.1158/1055-9965.EPI-06-0040
[154] Pistorius, S., G?ergens, H., Engel, C., et al. (2007) N-acetyltransferase (NAT) 2 acetylator status and age of tumour onset in patients with sporadic and familial, microsatellite stable (MSS) colorectal cancer. International Journal of Colorectal Disease, 22, 137-143. doi:10.1007/s00384-006-0171-0
[155] Mahid, S.S., Colliver, D.W., Crawford, N.P., et al. (2007) Characterization of N-acetyltransferase 1 and 2 polymorphisms and haplotype analysis for inflammatory bowel disease and sporadic colorectal carcinoma. BMC Medical Genetics, 8, 28. doi:10.1186/1471-2350-8-28
[156] Raimondi, S., Botteri, E., Iodice, S., et al. (2009) Genesmoking interaction on colorectal adenoma and cancer risk: Review and meta-analysis. Mutation Research, 670, 6-14. doi:10.1016/j.mrfmmm.2009.06.013
[157] Liu, H., Fu, Z., Wang, C.Y., Qian, J., Xing, L. and Liu, Y.W. (2012) A Meta-analysis of the relationship between NAT polymorphism and colorectal cancer susceptibility Medicina, 48, 117-131.
[158] Zhang, L.Q., Zhou, J.N., Wang, J., et al. (2012) Absence of association between n-acetyltransferase 2 acetylator status and colorectal cancer susceptibility: Based on evidence from 40 studies. PLoS ONE, 7, e32425. doi:10.1371/journal.pone.0032425
[159] Tiemersma, E.W., Kampman, E., Bueno de Mesquita, H.B., et al. (2002) Meat consumption, cigarette smoking, and genetic susceptibility in the etiology of colorectal cancer: results from a Dutch prospective study. Cancer Causes Control, 13, 383-393. doi:10.1023/A:1015236701054
[160] Moslehi, R., Chatterjee, N., Church, T.R., et al. (2006) Cigarette smoking, N-acetyltransferase genes and the risk of advanced colorectal adenoma. Pharmacogenomics, 7, 819-829. doi:10.2217/14622416.7.6.819
[161] Kobayashi, M., Otani, T., Iwasaki, M., et al. (2009) Association between dietary heterocyclic amine levels, genetic polymorphisms of NAT2, CYP1A1, and CYP1A2 and risk of colorectal cancer: A hospital-based case-control study in Japan. Scandinavian Journal of Gastroenterology, 44, 952-959. doi:10.1080/00365520902964721
[162] Kidd, L.C.R., Van Cleave, T.T., Doll, M.A., et al. (2011) No association between variant N-acetyltransferase genes, cigarette smoking and prostate cancer susceptibility among men of African descent. Biomark Cancer, 2011, 1-13.
[163] Zheng, Y., Li, Y., Teng, Y., et al. (2012) Association of NAT2 phenotype with risk of head and neck carcinoma: A meta-analysis. Oncology Letters, 3, 429-434.
[164] Chen, C., Ricks, S., Doody, D.R., et al. (2001) N-acetyltransferase 2 polymorphisms, cigarette smoking and alcohol consumption, and oral squamous cell cancer risk. Carcinogenesis, 22, 1993-1999. doi:10.1093/carcin/22.12.1993
[165] S?rensen, M., Autrup, H., Tj?nneland, A., et al. (2005) Genetic polymorphisms in CYP1B1, GSTA1, NQO1 and NAT2 and the risk of lung cancer. Cancer Letters, 221, 185-190. doi:10.1016/j.canlet.2004.11.012
[166] Belogubovaa, E.V., Kuliginaa, E.S., Togoa, A.V., et al. (2005) Comparison of extremes approach provides evidence against the modifying role of NAT2 polymorphism in lung cancer susceptibility. Cancer Letters, 221, 177-183. doi:10.1016/j.canlet.2004.11.008
[167] Gemignani, F., Landi, S., Szeszenia-Dabrowska, N., et al. (2007) Development of lung cancer before the age of 50: The role of xenobiotic metabolizing genes. Carcinogenesis, 28, 1287-1293. doi:10.1093/carcin/bgm021
[168] Lee, K.M., Park SK, Kim SU, et al. (2003) N-acetyltransferase (NAT1, NAT2) and glutathione S-transferase (GSTM1, GSTT1) polymorphisms in breast cancer. Cancer Letters, 196, 179-186. doi:10.1016/S0304-3835(03)00311-2
[169] Egeberg, R., Olsen, A., Autrup, H., et al. (2008) Meat consumption, N-acetyl transferase 1 and 2 polymorphism and risk of breast cancer in Danish postmenopausal women. European Journal of Cancer Prevention, 17, 39-47. doi:10.1097/CEJ.0b013e32809b4cdd
[170] Kocaba?, N.A., Sarda?, S., Cholerton, S., et al. (2004) N-acetyltransferase (NAT2) polymorphism and breast cancer susceptibility: A lack of association in a case-control study of Turkish population. International Journal of Toxicology, 23, 25-31. doi:10.1080/10915810490275053
[171] van der Hel, O.L., Peeters, P.H., Hein, D.W., et al. (2004) GSTM1 null genotype, red meat consumption and breast cancer risk (The Netherlands). Cancer Causes Control, 15, 295-303. doi:10.1023/B:CACO.0000024255.16305.f4
[172] Lash, T.L., Bradbury, B.D., Wilk, J.B., et al. (2005) A case-only analysis of the interaction between N-acetyltransferase 2 haplotypes and tobacco smoke in breast cancer etiology. Breast Cancer Research, 7, 385-393. doi:10.1186/bcr1013
[173] Lissowska, J., Brinton, L.A., Zatonski, W., et al. (2006) Tobacco smoking, NAT2 acetylation genotype and breast cancer risk. International Journal of Cancer, 119, 1961-1969. doi:10.1002/ijc.22044
[174] Ochs-Balcom, H.M., Wiesner, G. and Elston, R.C. (2007) A meta-analysis of the association of N-acetyltransferase 2 gene (NAT2) variants with breast cancer. American Journal of Epidemiology, 166, 246-254. doi:10.1093/aje/kwm066
[175] Mignone, L.I., Giovannucci, E., Newcomb, P.A., et al. (2009) Meat consumption, heterocyclic amines, NAT2, and the risk of breast cancer. Nutrition and Cancer, 61, 36-46. doi:10.1080/01635580802348658
[176] Taja-Chayeb, L., Agúndez, J.A., Miguez-Mu?oz, C., et al. (2012) Arylamine N-acetyltransferase 2 genotypes in a Mexican population. Genetics and Molecular Research, 11, 1082-1092. doi:10.4238/2012.April.27.7
[177] Srivastava, D.S. and Mittal, R.D. (2005) Genetic polymorphism of the N-acetyltransferase 2 gene, and susceptibility to prostate cancer: a pilot study in north Indian population. BMC Urology, 5, 12-18. doi:10.1186/1471-2490-5-12
[178] Rovito Jr., P.M., Morse, P.D., Spinek, K., et al. (2005) Heterocyclic amines and genotype of N-acetyltransferases as risk factors for prostate cancer. Prostate Cancer and Prostatic Diseases, 8, 69-74. doi:10.1038/sj.pcan.4500780
[179] Costa, S., Pinto, D., Morais, A., et al. (2005) Acetylation genotype and the genetic susceptibility to prostate cancer in a southern European population. Prostate, 64, 246-252. doi:10.1002/pros.20241
[180] Sharma, S., Cao, X., Wilkens, L.R., et al. (2010) Welldone meat consumption, NAT1 and NAT2 acetylator genotypes and prostate cancer risk: the multiethnic cohort study. Cancer Epidemiology, Biomarkers & Prevention, 19, 1866-1870. doi:10.1158/1055-9965.EPI-10-0231
[181] Zhong, X., Hui, C., Xiao-Ling, W., et al. (2010) NAT2 polymorphism and gastric cancer susceptibility: A metaanalysis. Archives of Medical Research, 41, 275-280. doi:10.1016/j.arcmed.2010.06.001
[182] Al-Moundhri, M.S., Al-Kindi, M., Al-Nabhani, M., et al. (2007) NAT2 polymorphism in Omani gastric cancer patients-risk predisposition and clinico pathological associations. World Journal of Gastroenterology, 13, 2697-2702.
[183] Kobayashi, M., Otani, T., Iwasaki, M., et al. (2009) Association between dietary heterocyclic amine levels, genetic polymorphisms of NAT2, CYP1A1, and CYP1A2 and risk of stomach cancer: a hospital-based case-control study in Japan. Gastric Cancer, 12, 198-205. doi:10.1007/s10120-009-0523-x
[184] Bartsch, H., Nair, U., Risch, A., et al. (2000) Genetic polymorphism of CYP genes, alone or in combination, as a risk modifier of tobacco-related cancers. Cancer Epidemiology, Biomarkers & Prevention, 9, 3-28.
[185] Zhang, X.F., Bian, J.C., Zhang, X.Y., et al. (2005) Are polymorphisms of N-acetyltransferase genes susceptible to primary liver cancer in Luoyang, China? World Journal of Gastroenterology, 11, 1457-1462.
[186] Hein, D.W., Doll, M.A., Rustan, T.D., et al. (1995) Metabolic activation of N-hydroxyarylamines and N-hydroxyarylamides by 16 recombinant human NAT2 allozymes: effects of 7 specific NAT2 nucleic acid substitutions. Cancer Research, 55, 3531-3536.
[187] Hein, D.W., Fretland, A.J. and Doll, M.A. (2006) Effects of single nucleotide polymorphisms in human N-acetyltransferase 2 on metabolic activation (O-acetylation) of heterocyclic amine carcinogens. International Journal of Cancer, 119, 1208-1211. doi:10.1002/ijc.21957
[188] Kawamura, A., Graham, J., Mushtaq, A., et al. (2005) Eukaryotic arylamine N-acetyltransferase. Investigation of substrate specificity by high-throughput screening. Biochemical Pharmacology, 69, 347-359. doi:10.1016/j.bcp.2004.09.014
[189] Walraven, J.M., Trent, J.O. and Hein, D.W. (2007) Computational and experimental analyses of mammalian arylamine N-acetyltransferase structure and function. Drug Metabolism and Disposition, 35, 1001-1007. doi:10.1124/dmd.107.015040

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.