Efficient Electrochemical Removal of Ammonia with Various Cathodes and Ti/RuO2-Pt Anode

Abstract

Electrochemical oxidation of ammonia was studied with an objective to enhance the selectivity of ammonia to nitrogen gas and to remove the by-products in an undivided electrochemical cell, in which various cathodes and Ti/RuO 2-Pt anode were assembled. In the present study, anodic oxidation of ammonia and cathodic reduction of by-products were achieved, especially with Cu/Zn as cathode. In the presence of 1.0 g/L NaCl the ammonia-N decreased from 100.0 to 0 after 120 min electrolysis at current density of 30 mA/cm2, and no nitrite was detected in the treated solution. The lowest amount of nitrate was formed with Cu/Zn as cathode during electrolysis due to its high reduction ability. Initial pH range from 7 and 9 and uncontrolled temperature were favorable for electrochemical ammonia oxidation and the ammonia oxidation rates with Cu/Zn cathode was higher than that with Ti and Fe cathode. The reduction rate increased with increasing current density in the range of 5 - 50 mA/cm2. As ammonia could be completely removed by the simultaneous oxidation and reduction in this study, it is suitable for deep treatment of ammonia polluted water.

Share and Cite:

Y. Wang, X. Guo, J. Li, Y. Yang, Z. Lei and Z. Zhang, "Efficient Electrochemical Removal of Ammonia with Various Cathodes and Ti/RuO2-Pt Anode," Open Journal of Applied Sciences, Vol. 2 No. 4, 2012, pp. 241-247. doi: 10.4236/ojapps.2012.24036.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] G. Tchobanoglous, F. L. B. H. D. Stensel and Metcalf & Eddy, “Wastewater Engineering: Treatment and Reuse,” 4th Edition, McGraw-Hill, New York, 2004.
[2] T. A. Larsen, M. M. K. M. Udert and J. Lienert, “Nutrient Cycles and Resource Management: Implications for the Choice of Wastewater Treatment Technology,” Water Science and Technology, Vol. 56, No. 5, 2007, pp. 229237. doi:10.2166/wst.2007.576
[3] Y. Fernández-Nava, E. Mara?ón, J. Soons and L. Castrillón, “Denitrification of Wastewater Containing High Nitrate and Calcium Concentrations,” Bioresource Technology, Vol. 99, No. 17, 2008, pp. 7976-7981. doi:10.1016/j.biortech.2008.03.048
[4] Y. Liu, L. Li and R. Goel, “Kinetic Study of Electrolytic Ammonia Removal Using Ti/IrO2 as Anode under Different Experimental Conditions,” Journal of Hazardous Materials, Vol. 167, No. 1-3, 2009, pp. 959-965. doi:10.1016/j.jhazmat.2009.01.082
[5] S.-J. Park and S.-Y. Jin, “Effect of Ozone Treatment on Ammonia Removal of Activated Carbons,” Journal of Colloid and Interface Science, Vol. 286, No. 1, 2005, pp. 417-419. doi:10.1016/j.jcis.2005.01.043
[6] M. Ramírez, J. M. Gómez, G. Aroca and D. Cantero, “Removal of Ammonia by Immobilized Nitrosomonas Europaea in a Biotrickling Filter Packed with Polyurethane Foam,” Chemosphere, Vol. 74, No. 10, 2009, pp. 13851390. doi:10.1016/j.chemosphere.2008.11.061
[7] M. Li, C. P. Feng and Z. Y. Zhang, “Optimization of Electrochemical Ammonia Removal Using Box-Behnken Design,” Journal of Electroanalytical Chemistry, Vol. 657, No. 1-2, 2011, pp. 66-73. doi:10.1016/j.jelechem.2011.03.012
[8] M. Li, C. P. Feng, Z. Y. Zhang and N. Sugiura, “Efficient Electrochemical Reduction of Nitrate to Nitrogen Using Ti/IrO2-Pt Anode and Different Cathodes,” Electrochimica Acta, Vol. 54, No. 20, 2009, pp. 4600-4606. doi:10.1016/j.electacta.2009.03.064
[9] G. H. Zhao, Y. G. Zhang, Y. Z. Lei, B. Y. Lv, J. X. Gao, Y. A. Zhang and D. M. Li, “Fabrication and Electrochemical Treatment Application of a Novel Lead Dioxide Anode with Superhydrophohic Surfaces, High Oxygen Evolution Potential, and Oxidation Capability,” Environment Science Technology, Vol. 44, No. 5, 2010, pp. 1754-1759. doi:10.1021/es902336d
[10] J. H. Qu and X. Zhao, “Design of BDD-TiO2 Hybrid Electrode with P-N Function for Photoelectrocatalytic Degradation of Organic Contaminants,” Environment Science Technology, Vol. 42, No. 13, 2008, pp. 4934-4939. doi:10.1021/es702769p
[11] A. Kapa?ka, A. Katsaounis and A. Leonidova, “Ammonia Oxidation to Nitrogen Mediated by Electrogenerated Active Chlorine on Ti/PtOx-IrO2,” Electrochemistry Communications, Vol. 12, No. 9, 2010, pp. 1203-1205. doi:10.1016/j.elecom.2010.06.019
[12] A. Kapa?ka, L. Joss and C. Comninellis, “Direct and Mediated Electrochemical Oxidation of Ammonia on Boron-Doped Diamond Electrode,” Electrochemistry Communications, Vol. 12, No. 12, 2010, pp. 1714-1717. doi:10.1016/j.elecom.2010.10.004
[13] N.-L. Michels, A. Kapalka and A. A. Abd-El-Latif, “Enhanced Ammonia Oxidation on BDD Induced by Inhibition of Oxygen Evolution Reaction,” Electrochemistry Communications, Vol. 12, No. 9, 2010, pp. 1199-1202. doi:10.1016/j.elecom.2010.06.018
[14] L. Candido and J. A. C. P. Gomes, “Evaluation of Anode Materials for the Electro-Oxidation of Ammonia and Ammonium Ions,” Materials Chemistry and Physics, Vol. 129, No. 3, 2011, pp. 1146-1151. doi:10.1016/j.matchemphys.2011.05.080
[15] Z. Du, H. Li and T. Gu, “A State of the Art Review on Microbial Fuel Cells: A Promising Technology for Wastewater Treatment and Bioenergy,” Biotechnology Advances, Vol. 25, No. 5, 2007, pp. 464-482. doi:10.1016/j.biotechadv.2007.05.004
[16] S. H. Lin and C. L. Wu, “Electrochemical Removal of Nitrite and Ammonia for Aquaculture,” Water Research, Vol. 30, No. 3, 1996, pp. 715-721. doi:10.1016/0043-1354(95)00208-1
[17] M. Li, C. P. Feng and Z. Y. Zhang, “Simultaneous Reduction of Nitrate and Oxidation of By-Products Using Electrochemical Method,” Journal of Hazardous Materials, Vol. 171, No. 1-3, 2009, pp. 724-730. doi:10.1016/j.jhazmat.2009.06.066
[18] M. Li, C. P. Feng and Z. Y. Zhang, “Application of an Electrochemical-Ion Exchange Reactor for Ammonia Removal,” Electrochimica Acta, Vol. 55, No. 1, 2009, pp. 159-164. doi:10.1016/j.electacta.2009.08.027
[19] Y. Deng and J. D. Englehardt, “Electrochemical Oxidation for Landfill Leachate Treatment,” Waste Management, Vol. 27, No. 3, 2007, pp. 380-388. doi:10.1016/j.wasman.2006.02.004
[20] M. Li, C. P. Feng and Z. Y. Zhang, “Electrochemical Reduction of Nitrate Using Various Anodes and a Cu/Zn Cathode,” Electrochemistry Communications, Vol. 11, No. 10, 2009, pp. 1853-1856. doi:10.1016/j.elecom.2009.08.001
[21] K.-W. Kim, “The Electrolytic Decomposition Mechanism of Ammonia to Nitrogen at an IrO2 Anode,” Electrochimica Acta, Vol. 50, No. 22, 2005, pp. 4356-4364. doi:10.1016/j.electacta.2005.01.046
[22] S. Xiao, J. Qu and X. Zhao, “Electrochemical Process Combined with UV Light Irradiation for Synergistic Degradation of Ammonia in Chloride-Containing Solutions,” Water Research, Vol. 43, No. 5, 2009, pp. 1432-1440. doi:10.1016/j.watres.2008.12.023
[23] G. Chen, “Electrochemical Technologies in Wastewater Treatment,” Separation and Purification Technology, Vol. 38, No. 1, 2004, pp. 11-41. doi:10.1016/j.seppur.2003.10.006
[24] Y. Vanlangendonck, D. Corbisier and A. Van Lierde, “Influence of Operating Conditions on the Ammonia Electro-Oxidation Rate in Wastewaters from Power Plants (ELONITA? technique),” Water Research, Vol. 39, No. 13, 2005, pp. 3028-3034. doi:10.1016/j.watres.2005.05.013
[25] B. Rumpf, A. P.-S. Kamps, R. Sing and G. Maurer, “Simultaneous Solubility of Ammonia and Hydrogen Sulfide in Water at Temperatures from 313 K to 393 K,” Fluid Phase Equilibria, Vol. 158-160, 1999, pp. 923-932. doi:10.1016/S0378-3812(99)00110-7
[26] A. G. Vlyssides, “Electrochemical Treatment in Relation to pH of Domestic Wastewater Using Ti/Pt Electrodes,” Journal of Hazardous Materials, Vol. 95, No. 1-2, 2002, pp. 215-226. doi:10.1016/S0304-3894(02)00143-7
[27] L.-C. Chiang, J.-E. Chang and T.-C. Wen, “Indirect Oxidation Effect in Electrochemical Oxidation Treatment of Landfill Leachate,” Water Research, Vol. 29, No. 2, 1995, pp. 671-678. doi:10.1016/0043-1354(94)00146-X
[28] L. Li and Y. Liu, “Ammonia Removal in Electrochemical Oxidation: Mechanism and Pseudo-Kinetics,” Journal of Hazardous Materials, Vol. 161, No. 2-3, 2009, pp. 10101016. doi:10.1016/j.jhazmat.2008.04.047
[29] A. H. Mahvi, “Performance Evaluation of a Continuous Bipolar Electrocoagulation/Electrooxidation—Electroflotation (ECEO-EF) Reactor Designed for Simultaneous Removal of Ammonia and Phosphate from Wastewater Effluent,” Journal of Hazardous Materials, Vol. 192, No. 3, 2011, pp. 1267-1274. doi:10.1016/j.jhazmat.2011.06.041
[30] S. K?rner, S. K. Das and S. Veenstra, “The Effect of pH Variation at the Ammonium/Ammonia Equilibrium in Wastewater and Its Toxicity to Lemna Gibba,” Aquatic Botany, Vol. 71, No. 1, 2001, pp. 71-78. doi:10.1016/S0304-3770(01)00158-9

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.