Recent advances in pharmacological therapy of Parkinson’s disease: Levodopa and carbidopa protective effects against DNA oxidative damage

Abstract

Parkinson’s disease is one of the most common progressive neurodegenerative disorder. It is characterized by the depletion of dopamine in the dopaminergic neurons of the striatum of the brain. Pharmacological treatment involves the administration of a dopamine precursor, levodo- pa (L-Dopa), which crosses the blood-brain barrier and replaces the loss of dopamine in the brain. One of the main drawbacks of the ad- ministration of L-Dopa is its short half-life, due to the presence of enzymes, such as the amino acid decarboxylase (AADC), able to rapidly me- tabolize L-Dopa. For this reason the intake of L-Dopa takes always place together with an AADC inhibitor such as carbidopa. The assumption of carbidopa increases L-Dopa half-life, but several patients need to increase the dosage of the pharmacological therapy during the progression of the disease. Another area of dispute is represented by the possibility that L-Dopa can exert a toxic effect on the cells, both in peripheral and in central nervous system, increasing the production of ROS following its conversion to dopamine. Past studies reported toxic effects of L-Dopa in vitro and show conflicting data in in vivo experiments. More recent studies have however shown that L-dopa may exert a protective and antioxidant effect on dopaminergic cells, and its combination with carbidopa in pharmacological treatment amplifies antioxidant capability.

Share and Cite:

Colamartino, M. , Padua, L. , Cornetta, T. , Testa, A. and Cozzi, R. (2012) Recent advances in pharmacological therapy of Parkinson’s disease: Levodopa and carbidopa protective effects against DNA oxidative damage. Health, 4, 1191-1199. doi: 10.4236/health.2012.431177.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Parkinson, J. (1817) An essay on the shaking palsy. Sher-Wood, Neely and Jones, London.
[2] Goole, J., Amighi K. (2009) Levodopa delivery systems for the treatment of Parkinson’s disease: An overview. International Journal of Pharmaceutics, 380, 1-15. doi:10.1016/j.ijpharm.2009.07.026
[3] Nagatsua, T., Sawadab, M. (2009) L-dopa therapy for Parkinson’s disease: Past, present, and future. Parkinson- ism & Related Disorders, 15, S3-S8. doi:10.1016/S1353-8020(09)70004-5
[4] Cotzias, C.G., Van Woert, M.H., Schiffer, L.M. (1967) Aromatico amino acids and modification of Parkinsonism. The New England Journal of Medicine, 276, 374-379. doi:10.1056/NEJM196702162760703
[5] Nutt, J.G., Wood-ward, W.R., Hammerstad, J.P., Carter, J.H. and Anderson, J.L. (1984) The “on-off” phenomenon in Parkinson’s disease. Relation to levodopa absorption and transport. The New England Journal of Medicine, 310, 483-488. doi:10.1056/NEJM198402233100802
[6] Olanow, C.W. (2004) The scientific basis for the current treatment of Parkinson’s disease. Annual Reviews of Medicine, 55, 41-60. doi:10.1146/annurev.med.55.091902.104422
[7] Boomsma, F., Meerwaldt, J.D., Intveld, A.J.M., Hovestadt, A. and Schalekamp, M. (1989) Treatment of idiopathic Parkinsonism with L-Dopa in the absence and presence of decarboxylase inhibitors—Effects on plasma-levels of L-Dopa, Dopa decarboxylase, cate-cholamines and 3-O- methyl-dopa. Journal of Neurology, 236, 223-230. doi:10.1007/BF00314504
[8] Hauser, R.A., Panisset, M., Abbruzzese, G., Mancione, L., Dronamraju, N., Kakarieka, A., et al. (2009) Double- blind trial of levodo-pa/carbidopa/entacapone versus levo- dopa/carbidopa in early Parkinson’s disease. Movement Disorders, 24, 541-550. doi:10.1002/mds.22343
[9] Prigione, A., Begni, B., Galbussera, A., Beretta, S., Brighina, L., Garofalo, R., et al. (2006) Oxidative stress in peripheral blood mononuclear cells from patients with Parkinson’s disease: Negative correlation with levodopa dosage. Neurobiology of Disease, 23, 36-43. doi:10.1016/j.nbd.2006.01.013
[10] Nyholm, D. (2006) Phar-macokinetic optimisation in the treatment of Parkinson’s disease: An update. Clinical Pharmacokinetics, 45, 109-136. doi:10.2165/00003088-200645020-00001
[11] Olanow, C.W., Agid, Y., Mizuno, Y., Albanese, A., Bonucelli, U., Damier, P., et al. (2004) Levodopa in the treatment of Parkinson’s disease: Current controversies. Movement Disorders, 19, 997-1005. doi:10.1002/mds.20243
[12] Lawlor, P.A. and During, M.J. (2004) Gene therapy for Parkinson’s disease. Expert Reviews in Molecular Medicine, 6, 1-18. doi:10.1017/S146239940400746X
[13] Rinne, U.K., Sonninen, V. and Hyyppa, M. (1971) Effect of L-dopa on brain monoamines and their metabolites in Parkinson's disease. Life Sciences, 10, 549-557. doi:10.1016/0024-3205(71)90040-3
[14] Snyder, G.L. and Zigmond, M.J. (1990) The effects of L-dopa on in vitro dopa-mine release from striatum. Brain Research, 508, 181-187. doi:10.1016/0006-8993(90)90394-Q
[15] Lloyd, K.G., Davidson, L. and Hornykiewicz, O. (1975) The neurochemistry of Parkinson’s disease: Effect of L-dopa therapy. Journal of Pharmacology and Experi- mental Therapeutics, 195, 453-464.
[16] Schoenfeld, R.I. and Uretsky, N.J. (1973) Enhancement by 6-hydroxydopamine of the effects of DOPA upon the motor activity of rats. Journal of Pharmacology and Experimental Therapeutics, 186, 616-624.
[17] Arai, R., Karasawa, N., Geffard, M. and Nagatsu, I. (1995) L-dopa is converted to dopamine in serotonergic fibers of the striatum of the rat—A double-labeling immunofluo-rescence study. Neuroscience Letters, 195, 195-198. doi:10.1016/0304-3940(95)11817-G
[18] Everett, G.M. and Borcherding, J.W. (1970) L-DOPA: Effect on concentrations of dopamine, norepinephrine, and serotonin in brains of mice. Science, 168, 849-850.
[19] Fornstedt, B., Brun, A., Rosengren, E. and Carlsson, A. (1989) The apparent autoxidation rate of catechols in do-paminerich regions of human brains increases with the degree of depigmentation of substantia nigra. Journal of Neural Transmission Parkinson’s Disease and Dementia Section, 1, 279-295. doi:10.1007/BF02263482
[20] Fornstedt, B., Pileblad, E. and Carlsson, A. (1990) In vivo autoxidation of dopamine in guinea-pig striatum increases with age. Journal of Neurochemistry, 55, 655-659. doi:10.1111/j.1471-4159.1990.tb04183.x
[21] Halliwell, B. (1989) Oxidants and the central nervous system: Some funda-mental questions. Is oxidant damage relevant to Parkinson's disease, Alzheimer’s disease, trau- matic injury or stroke? Acta Neurologica Scandinavica, Supplementum, 126, 23-33. doi:10.1111/j.1600-0404.1989.tb01779.x
[22] Obata, T. and Yamanaka, Y. (1996) Protective effect of carbidopa on hydroxyl radical generation in the rat stria- tum by dopamine. Neurosci-ence Letters, 27, 13-16.
[23] Dexter, D.T., Wells, F.R., Agid, F., Agid, Y., Lees, A.J., Jenner, P., et al. (1987) Increased nigral iron content in postmortem Parkinsonian brain. Lancet, 2, 1219-1220. doi:10.1016/S0140-6736(87)91361-4
[24] Dexter, D.T., Carter, C.J., Wells, F.R., Javoyagid, F., Agid, Y., Lees, A., et al. (1989) Basal lipid-peroxidation in substantia nigra is increased in parkinsons-disease. Journal of Neurochemistry, 52, 381-389. doi:10.1111/j.1471-4159.1989.tb09133.x
[25] Sofic, E., Paulus, W., Jellinger, K., Riederer, P. and Youdim, M.B.H. (1991) Se-lective increase of iron in substantia-nigra zona compacta of Parkinsonian brains. Journal of Neurochemistry, 56, 978-982. doi:10.1111/j.1471-4159.1991.tb02017.x
[26] Mizuno, Y., Ohta, S., Tanaka, M., Takamiya, S., Suzuki, K., Sato, T., et al. (1989) Deficiencies in complex-i subunits of the respirato-ry-chain in Parkinson’s-disease. Biochemical and Biophysical Research Communications, 163, 1450-1455. doi:10.1016/0006-291X(89)91141-8
[27] Schapira, A.H.V., Cooper, J.M., Dexter, D., Clark, J.B., Jenner, P. and Marsden, C.D. (1990) Mitochondrial complex I deficiency in Parkinson’s-disease. Journal of Neurochemistry, 54, 823-827. doi:10.1111/j.1471-4159.1990.tb02325.x
[28] Dexter, D.T., Holley, A.E., Flitter, W.D., Slater, T.F., Wells, F.R., Daniel, S.E., et al. (1994) Increased levels of lipid hydroperoxides in the parkinsonian substantia-nigra —an hplc and esr study. Move-ment Disorders, 9, 92-97. doi:10.1002/mds.870090115
[29] Alam, Z.I., Jenner, A., Daniel, S.E., Lees, A.J., Cairns, N., Marsden, C.D., et al. (1997) Oxidative DNA damage in the parkinsonian brain: An apparent selective increase in 8-hydroxyguanine levels in substantia nigra. Journal of Neurochemistry, 69, 1196-1203. doi:10.1046/j.1471-4159.1997.69031196.x
[30] Yoritaka, A., Hattori, N., Uchida, K., Tanaka, M., Stadtman, E.R. and Mizuno, Y. (1996) Immunohistochemical detec- tion of 4-hydroxynonenal protein adducts in Parkinson disease. Proceedings of National Academy of Sciences USA, 93, 2696-2701. doi:10.1073/pnas.93.7.2696
[31] Graham, D.G. (1984) Cate-cholamine toxicity: A proposal for the molecular pathogenesis of manganese neurotoxic- ity and Parkinson’s disease. Neurotoxicology, 5, 83-95.
[32] Slivka, A. and Cohen, G. (1985) Hydroxyl radical attack on dopamine. The Journal of Biological Chemistry, 260, 15466-15472.
[33] Good, P.F., Hsu, A., Werner, P., Perl, D.P. and Olanow, C.W. (1998) Protein nitration in Parkinson’s disease. Journal of the Neuropathology & Experimental Neurol- ogy, 57, 338-342. doi:10.1097/00005072-199804000-00006
[34] Sofic, E., Lange, K.W., Jellinger, K. and Riederer, P. (1992) Reduced and oxidized glutathione in the sub- stantianigra of patients with Parkinson’s-disease. Neuro- science Letters, 142, 128-130.
[35] Cheng, K.C., Cahill, D.S., Kasai, H., Nishimura, S. and Loeb, L.A. (1992) 8-hydroxyguanine, an abundant form of oxidative DNA damage, causes g -> t and a -> c sub- stitutions. The Journal of Biological Chemistry, 267, 166- 172.
[36] Lindahl, T. (1993). Instability and decay of the pri-mary structure of DNA. Nature, 362, 709-715.
[37] Hastings, T.G. and Zigmond, M.J. (1994) Identification of catechol-protein conjugates in neostriatal slices incubated with h-3 dopamine—Impact of ascorbic-acid and gluta- thione. Journal of Neurochemistry, 3, 1126-1132. doi:10.1046/j.1471-4159.1994.63031126.x
[38] Andersen, J.K. (2004) Iron dysregulation and Parkinson’s disease. Journal of Alzheimer’s Disease, 6, S47-S52.
[39] Smith, T.S., Parker, W.D. and Bennett, J.P. (1994) L-dopa increases nigral produc-tion of hydroxyl radicals in-vivo— potential l-dopa toxicity. Neuroreport, 5, 1009-1011.
[40] Basma, A.N., Morris, E.J., Nicklas, W.J. and Geller, H.M. (1995) L-dopa cytotoxicity to pc12 cells in culture is via its autoxidation. Journal of Neuro-chemistry, 64, 825-832. doi:10.1046/j.1471-4159.1995.64020825.x
[41] Mytilineou, C., Han, S.K. and Cohen, G. (1993) Toxic and protective effects of L-dopa on mesencephalic cell- cultures. Journal of Neuro-chemistry, 61, 1470-1478. doi:10.1111/j.1471-4159.1993.tb13642.x
[42] Mytilineou, C., Walker, R.H., Jnobaptiste, R. and Olanow, C.W. (2003) Levodopa is toxic to dopamine neurons in an in vitro but not an in vivo model of oxidative stress. Journal of the Pharmacology and Experimental Therapeutics, 304, 792-800. doi:10.1124/jpet.102.042267
[43] Muenter, M.D. and Tyce, G.M. (1971) L-dopa therapy of Parkinson’s disease: Plasma L-dopa concentration, therapeutic response, and side effects. Mayo Clinic Proceedings, 46, 231-239.
[44] Olanow, C.W., Gauger, L.L. and Cedarbaum, J.M. (1991) Temporal relationships between plasma and cerebrospi- nal-fluid pharmacokinetics of levodopa and clinical effect in Parkinson’s-disease. Annals of Neurology, 29, 556-559. doi:10.1002/ana.410290516
[45] Benetello, P., Furlanut, M., Zara, G., Baraldo, M. and Hassan, E. (1993) Plasma-levels of levodopa and its main metabolites in parkinsonian-patients after conventional and controlled-release levodopa-carbidopa associations. European Neurology, 33, 69-73. doi:10.1159/000116905
[46] Perry, T.L., Yong, V.W., Ito, M., Foulks, J.G., Wall, R.A., Godin, D.V., et al. (1984) Nigrostriatal dopaminergic neurons remain undamaged in rats given high doses of L-DOPA and carbidopa chronically. Journal of Neurochemistry, 43, 990-993. doi:10.1111/j.1471-4159.1984.tb12834.x
[47] Zeng, B.Y., Pearce, R.K.B., MacKenzie, G.M. and Jenner, P. (2001) Chronic high dose L-dopa treatment does not alter the levels of dopamine D-1, D-2 or D-3 receptor in the striatum of normal monkeys: An autoradiographic study. Journal of Neural Transmission, 108, 925-941. doi:10.1007/s007020170013
[48] Quinn, N., Parkes, D., Janota, I. and Marsden, C.D. (1986) Preservation of the substantia nigra and locus coeruleus in a patient receiving levodopa (2 kg) plus decarboxylase inhibitor over a four-year period. Movement Disorders, 1, 65-68. doi:10.1002/mds.870010109
[49] Fahn, S., Shoulson, I., Kieburtz, K., Rudolph, A., Lang, A., Olanow, C.W., et al. (2004) Levodopa and the progression of Parkinson's disease. The New England Journal of Medicine, 351, 2498-2508. doi:10.1056/NEJMoa033447
[50] Hastings, T.G. and Zigmond, M.J. (1994) Identification of catechol-protein conjugates in neostriatal slices incubated with h-3 dopamine—Impact of ascorbic-acid and gluta- thione. Journal of Neurochemistry, 63, 1126-1132. doi:10.1046/j.1471-4159.1994.63031126.x
[51] Mena, M.A., Davila, V., Bogaluvsky, J. and Sulzer, D. (1998) A synergistic neurotrophic response to I-dihy- droxyphenylalanine and nerve growth factor. Molecular Pharmacology, 54, 678-686.
[52] Mena, M.A., Davila, V. and Sulzer, D. (1997) Neurotrophic effects of L-DOPA in postnatal midbrain dopamine neuron cortical astrocyte cocultures. Journal of Neuro- chemistry, 69, 1398-408. doi:10.1046/j.1471-4159.1997.69041398.x
[53] Han, S.K., Mytilineou, C. and Cohen, G. (1996) L-DOPA up-regulates glutathione and protects mesencephalic cultures against oxidative stress. Journal of Neurochemistry, 66, 501-510. doi:10.1046/j.1471-4159.1996.66020501.x
[54] Cedarbaum, J.M. (1987) Clinical pharmacokinetics of anti- parkinsonian drugs. Clinical Pharmacokinetics, 13, 141- 178. doi:10.2165/00003088-198713030-00002
[55] Bredberg, E., Tedroff, J., Aquilonius, S.M., et al. (1990) Pharmacokinetics and effects of levodopa in advanced Parkinson’s disease. European Journal of Clinical Phar- macology, 39, 385-389. doi:10.1007/BF00315415
[56] Contin, M., Riva, R., Albani, F., et al. (1996) Pharma- cokinetic optimisation in the treatment of Parkinson's disease. Clinical Pharmacokinetics, 30, 463-481. doi:10.2165/00003088-199630060-00004
[57] Calne, D.B., Claveria, L.E. and Allen, J.G. (1974) Plasma levodopa and the “on-off” effect. Advances in Neurology, 5, 341-344.
[58] Kaakkola, S., Mannisto, P.T., Nissinen, E., et al. (1985) The effect of an increased ratio of carbidopa to levodopa on the pharmacokinetics of levodopa. Acta Neurologica Scandinavica, 72, 385-391. doi:10.1111/j.1600-0404.1985.tb00888.x
[59] Hadjiconstantinou, M. and Neff, N.H. (2008) Enhancing aromatic L-amino acid decarboxylase activity: Implications for L-DOPA treatment in Parkinson’s disease. CNS Neuroscience & Therapeutics, 14, 340-351.
[60] Jonkers, N., Sarre, S., Ebinger, G. and Michotte, Y. (2001) Benserazide decreases central AADC activity, extracellular dopamine levels and levodopa decarboxylation in striatum of the rat. Journal of Neural Transmission, 108, 559- 570. doi:10.1007/s007020170056
[61] Pinder, R.M., Brogden, R.N., Sawyer, P.R., Speight, T.M. and Avery, G.S. (1976) Levodopa and decarboxylase inhibitors: A review of their clinical pharmacology and use in the treatment of Parkinsonism. Drugs, 11, 329-377. doi:10.2165/00003495-197611050-00001
[62] Da Prada, M., Kettler, R., Zurcher, G., Schaffner, R. and Haefely, W.E. (1987) Inhibition of decarboxylase and levels of dopa and 3-O-methyldopa: A comparative study of benserazide versus carbidopa in rodents and of Madopar standard versus Madopar HBS in volunteers. European Neurology, 27, 9-20. doi:10.1159/000116170
[63] Korten, J.J., Keyser, A., Joosten, E.M. and Gabreels, F.J. (1975) Madopar versus sinemet. A clinical study on their effectiveness. European Neurology, 13, 65-71. doi:10.1159/000114663
[64] Lieberman, A., Goodgold, A., Jonas, S. and Leibowitz, M. (1975) Comparison of dopa decarboxylase inhibitor (car- bidopa) combined with levodopa and levodopa alone in Parkinson’s disease. Neurology, 25, 911-916. doi:10.1212/WNL.25.10.911
[65] Perry, T.L., Yong, V.W., Ito, M., Foulks, J.G., Wall, R.A., Godin, D.V., et al. (1984) Nigrostriatal dopaminergic neurons remain undamaged in rats given high doses of L-DOPA and carbidopa chronically. Journal of Neurochemistry, 43, 990-993. doi:10.1111/j.1471-4159.1984.tb12834.x
[66] Sian, J., Dexter, D.T., Lees, A.J., Daniel, S., Agid, Y., Javoyagid, F., et al. (1994) Alterations in glutathione levels in parkinsons-disease and other neurodegenerative disorders affecting basal ganglia. Annals of Neurology, 36, 348-355. doi:10.1002/ana.410360305
[67] Facchinetti, F., Dawson, V.L. and Dawson, T.M. (1998) Free radicals as mediators of neuronal injury. Cellular and Molecular Neurobiology, 18, 667-682. doi:10.1023/A:1020221919154
[68] Dizdaroglu, M. (1992) Oxidative damage to DNA in mammalian chromatin. Mutation Research, 275, 331-342. doi:10.1016/0921-8734(92)90036-O
[69] Aust, A.E. and Eveleigh, J.F. (1999) Mechanisms of DNA oxidation. Proceedings of the Society for Experimental Biology and Medicine, 222, 246-252. doi:10.1046/j.1525-1373.1999.d01-141.x
[70] Migliore, L., Petrozzi, L., Lucetti, C., Gambaccini, G., Bernardini, S., Scarpato, R., et al. (2002) Oxidative damage and cytogenetic analysis in leukocytes of Parkinson’s disease patients. Neurology, 58, 1809-1815. doi:10.1212/WNL.58.12.1809
[71] Collins, A.R., Duthie, S.J. and Dobson, V.L. (1993) Direct enzymatic detection of endogenous oxidative base damage in human lymphocyte DNA. Carcinogenesis, 14, 1733-1735. doi:10.1093/carcin/14.9.1733
[72] Cornetta, T., Palma, S., Aprile, I., Padua, L., Tonali, P., Testa, A., et al. (2009) Levodopa therapy reduces DNA damage in peripheral blood cells of patients with Parkinson’s disease. Cell Biology and Toxicology, 25, 321-330. doi:10.1007/s10565-008-9086-6
[73] Kanabrocki, E.L., Murray, D., Hermida, R.C., Scott, G.S., Bremner, W.F., Ryan, M.D., et al. (2002) Circadian variation in oxidative stress markers in healthy and type II diabetic men. Chronobiology International, 19, 423-439. doi:10.1081/CBI-120002914
[74] Oli, R.G., Fazeli, G., Kuhn, W., Walitza, S., Gerlach, M. and Stopper, H. (2010) No increased chromosomal damage in L-DOPA-treated patients with Parkinson’s disease: A pilot study. Journal of Neural Transmission, 117, 737-746. doi:10.1007/s00702-010-0401-z
[75] Kostrzewa, R.M., Kostrzewa, J.P. and Brus, R. (2002) Neuroprotective and neurotoxic roles of levodopa (L-DOPA) in neurodegenerative disorders relating to Parkinson’s disease. Amino Acids, 23, 57-63. doi:10.1007/s00726-001-0110-x
[76] Colamartino, M., Padua, L., Meneghini, C., Leone, S., Cornetta, T., Testa, A. and Cozzi, R. (2012) Protective effects of L-Dopa and carbidopa combined treatments on human catecholaminergic cells. DNA and Cell Biology, 31, 1572-1579. doi:10.1089/dna.2011.1546
[77] Seeberger, L.C. and Hauser, R.A. (2007) Optimizing bio-availability in the treatment of Parkinson’s disease. Neuropharmacology, 53, 791-800. doi:10.1016/j.neuropharm.2007.08.019

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.