Poly(N-isopropylacrylamide-co-N-tert-butylacrylamide)- grafted hyaluronan as an injectable and self-assembling scaffold for cartilage tissue engineering

Abstract

Novel poly(N-isopropylacrylamide-co-N-tert-butylacrylamide)-grafted hyaluronan [P(NIPAAm-co-NtBAAm)-g-HA] has been developed as a modified derivative to improve phase-transition characteristics of PNIPAAm-g-HA, which has a lower critical solution temperature (LCST) of approximately 32°C. This promising self-assembling biomaterial has potential as an injectable scaffold for in situ cartilage tissue engineering. LCST of the P(NIPAAm-co-NtBAAm)-g-HA decreased to approximately 3.6°C compared to that of the original PNIPAAm-g-HA. This modification enabled self-assembly at body temperatures lower than the temperature of the parental PNIPAAm-g-HA molecule. Cytotoxicity and acute systemic toxicity assays revealed that P(NIPAAm-co-NtBAAm)-g-HA was not hazardous. The DNA content of chondrogenic differentiated mesenchymal stem/stromal cells (MSCs) embedded in the gels was higher than that of biomaterial-free aggregates during the culture periods. Cartilage-related genes were also expressed in chondrogenic differentiated MSCs embedded in the P (NIPAAm-co-NtBAAm)-g-HA hydrogel. Specifically, an increased expression of SRY-related HMG box-containing gene 9 (Sox9) observed in the hydrogel group compared to controls. These data suggest that P(NIPAAm-co-NtBAAm)-g-HA is a promising injectable scaffold with thermoresponsive properties suitable for in situ cartilage tissue engineering.

Share and Cite:

Muramatsu, K. , Saito, Y. , Wada, T. , Hirai, H. and Miyawaki, F. (2012) Poly(N-isopropylacrylamide-co-N-tert-butylacrylamide)- grafted hyaluronan as an injectable and self-assembling scaffold for cartilage tissue engineering. Journal of Biomedical Science and Engineering, 5, 639-646. doi: 10.4236/jbise.2012.511079.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Grande, D.A., Pitman, M.I., Peterson, L., Menche, D. and Klein, M. (1989) The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation. Journal of Orthopaedic Research, 7, 208-218. doi:10.1002/jor.1100070208
[2] Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O. and Peterson, L. (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. New England Journal of Medicine, 331, 889-895. doi:10.1056/NEJM199410063311401
[3] Peterson, L., Minas, T., Brittberg, M., Nilsson, A., Sjogren-Jansson, E. and Lindahl, A. (2000) Two- to 9-year outcome after autologous chondrocytes transplantation of the knee. Clinical Orthopaedics and Related Research, 374, 412-434. doi:10.1097/00003086-200005000-00020
[4] Sohn, D.H., Lottman, L.H., Lum, L.Y., Kim, S.G., Pedowitz, R.A., Coutts R.D. and Sah, R.L. (2002) Effect of gravity on location of chondrocytes implanted in cartilage defects. Clinical Orthopaedics and Related Research, 394, 254-262. doi:10.1097/00003086-200201000-00030
[5] Wakitani, S., Goto, T., Pineda, S.J., Young, R.G., Mansour, J.M., Caplan, A.I. and Goldberg, V.M. (1994) Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. The Journal of Bone and Joint Surgery, 76, 579-592.
[6] Kawamura, S., Wakitani, S., Kimura, T., Maeda, A., Caplan, A.I., Shino, K. and Ochi, T. (1998) Articular cartilage repair: Rabbit experiments with a collagen gelbiomatrix and chondrocytes cultured in it. Acta Orthopaedica Scandinavica, 69, 56-62. doi:10.3109/17453679809002358
[7] Ochi, M., Uchio, Y., Kawasaki, K., Wakitani, S. and Iwasa, J. (2002) Transplantation of cartilage-like tissue made by tissue engineering in the treatment of cartilage defects of the knee. Journal of Bone and Joint Surgery [Br.], 84, 571-578. doi:10.1302/0301-620X.84B4.11947
[8] Britt, J.C. and Park, S.S. (1998) Autogenous tissue-engineered cartilage: Evaluation as an implant material. Archives of Otolarygology—Head & Neck Surgery, 124, 671-677.
[9] Solchaga, L.A., Dennis, J.E., Goldberg, V.M. and Caplan, A.I. (1999) Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage. Journal of Orthopaedic Research, 17, 205-213. doi:10.1002/jor.1100170209
[10] Gugala, Z. and Gogolewski, S. (2000) In vitro growth and activity of primary chondrocytes on a resorbable polylactide-dimensional scaffold. Journal of Biomedical Materials Research, 49, 183-191. doi:10.1002/(SICI)1097-4636(200002)49:2<183::AID-JBM5>3.0.CO;2-D
[11] Ponticiello, M.S., Schinagl, R.M., Kadiyara, S. and Barry, F.P. (2000) Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy. Journal of Biomedical Materials and Research, 52, 246-255. doi:10.1002/1097-4636(200011)52:2<246::AID-JBM2>3.0.CO;2-W
[12] Ma, H.-L., Hung, S.-C., Lin, S.-Y., Chen, Y.-L. and Lo, W.-H. (2003) Chondrogenesis of human mesenchymal stem cells encapsulated in alginate beads. Journal of Bio-medical Materials Research, 64A, 273-281. doi:10.1002/jbm.a.10370
[13] Abe, M., Takahashi, M., Tokura, S., Tamura, H. and Nagano, A. (2004) Cartilage-scaffold composites produced by bioresorbable β-chitin sponge with cultured rabbit chondrocytes. Tissue Engineering, 10, 585-594. doi:10.1089/107632704323061942
[14] Cho, J.H., Kim, S.-H., Park, K.D., Jung, M.C., Yang, W.I., Han, S.W., Noh, J.Y. and Lee, J.W. (2004) Chondrogenic differentiation of human mesenchymal stem cells using a thermosensitive poly(Nisopropylacrylamide) and watersoluble chitosan copolymer. Biomaterials, 25, 5743-5751. doi:10.1016/j.biomaterials.2004.01.051
[15] Chen, J.-P. and Cheng, T.-H. (2006) Thermo-responsive chitosan-graft-poly(N-isopropylacrylamide) injectable hydrogel for cultivation of chondrocytes and meniscus cells. Macromolecular Bioscience, 6, 1026-1039. doi:10.1002/mabi.200600142
[16] Muramatsu, K., Ide, M. and Miyawaki, F. (2012) Biological evaluation of tissue-engineered cartilage using thermoresponsive poly(N-isopropylacrylamide)-grafted hyaluronan. Journal of Biomaterials and Nanobiotechnology, 3, 1-9. doi:10.4236/jbnb.2012.31001
[17] Uludag, H., Norrie, B., Kousinioris, N. and Gao, T.J. (2001) Engineering temperature-sensitive poly(N-isopropylacrylamide) polymers as carriers of therapeutic proteins. Biotechnology and Bioengineering, 73, 510-521. doi:10.1002/bit.1086
[18] Kim, J.-H., Kim, Y.-S., Park, K., Kang, E., Lee, S., Nam, H.Y., Kim, K., Park, J.H. Chi, D.Y., Park, R.-W., Kim, I.-S., Choi, K. and Kwon, I.C. (2008) Self-assembled glycol chitosan nanoparticles for the sustained and prolonged delivery of antiangiogenic small peptide drugs in cancer therapy. Biomaterials, 29, 1920-1930. doi:10.1016/j.biomaterials.2007.12.038
[19] Yamada, N., Okano, T., Sakai, H., Karikusa, F., Sawasaki, Y. and Sakurai, Y. (1990) Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells. Macromolecular Chemistry, Rapid Communication, 11, 571-576. doi:10.1002/marc.1990.030111109
[20] Liu, H.Y. and Zhu, X.X. (1999) Lower critical solution temperatures of N-substituted acrylamide copolymer in aqueous solutions. Polymer, 40, 6985-6990. doi:10.1016/S0032-3861(98)00858-1
[21] Hoffman, A.S., Stayton, P.S., Bulmus, V., Chen, G., Chen, J., Cheung, C., Chilkoti, A., Ding, Z., Dong, L., Fong, R., Lackey, C.A., Long, C.J., Miura, M., Morris, J.E., Murthy, N., Nabeshima, Y., Park, T.G., Press, O.W., Shimoboji, T., Shoemaker, S., Yang, H.J., Monji, N., Nowinski, R.C., Cole, C.A., Priest, J.H., Harris, J.M., Nakamae, K., Nishino, T. and Miyata, T. (2000) Really smart bioconjugates of smart polymers and receptor proteins. Journal of Biomedical Materials Research, 52, 577-586. doi:10.100
[22] Wakitani, S., Saito, T. and Caplan, A.I. (1995) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle & Nerve, 18, 1417-1426. doi:10.1002/mus.880181212
[23] Pittenger, M.F., Mackey, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S. and Marshak, D.R. (1999) Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143-147. doi:10.1126/science.284.5411.143
[24] Woodbury, D., Schwarz, E.J., Prockop, D.J. and Black, I.B. (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. Journal of Neuroscience Research, 61, 364-370. doi:10.1002/1097-4547(20000815)61:4<364::AID-JNR2>3.0.CO;2-C
[25] Ohgushi, H., Kitamura S., Kotobuki, N., Hirose, M., Machida, H., Muraki, K. and Takakura, Y. (2004) Clinical application of marrow mesenchymal stem cells for hard tissue repair. Yonsei Medical Journal, 45, 61-67.
[26] Kuroda, R., Ishida, K., Matsumoto, T., Akusue, T., Fujioka, H., Mizuno, K., Ohgushi, H., Wakitani, S. and Kurosaka, M. (2007) Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthritis and Cartilage, 15, 226-231. doi:10.1016/j.joca.2006.08.008
[27] Nejadnik, H., Hui, J.H., Choong, E.P.F., Tai, B.C. and Lee, E.H. (2010) Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. The American Journal of Sports Medicine, 38, 1110-1116. doi:10.1177/0363546509359067
[28] Grundmann, K., Zimmermann, B., Barrach, H.-J. and Merker, H.-J. (1980) Behavior of epiphyseal mouse chondrocyte populations in monolayer culture, Morphological and immunohistochemical studies. Virchows Archiv A: Pathological Anatomy and Histology, 389, 167-187. doi:10.1007/BF00439484
[29] Angele, P., Kujat, R., Nerlich, M., Yoo, J., Goldberg, V. and Johnstone, B. (1999) Engineering of osteochondral tissue with bone marrow mesenchymal progenitor cells in a derivatized hyaluronan-gelatin composite sponge. Tissue Engineering, 5, 545-554. doi:10.1089/ten.1999.5.545
[30] Radice, M., Brun, P., Cortivo, R., Scapinelli, R., Battaliard, C. and Abatangelo, G. (2000) Hyaluronan-based biopolymers as delivery vehicles for bone-marrow-derived mesenchymal progenitors. Journal of Biomedical Materials Research, 50, 101-109. doi:10.1002/(SICI)1097-4636(200005)50:2<101::AID-JBM2>3.0.CO;2-M
[31] Lisignoli, G., Cristino, S., Piasentini, A., Cavallo, C., Caplan, A.I. and Facchini, A. (2006) Hyaluronan-based polymer scaffold modulates the expression of inflammatory and degradative factors in mesenchymal stem cells: Involvement of Cd44 and Cd54. Journal of Cellular Physiology, 207, 364-373. doi:10.1002/jcp.20572
[32] Knudson, C.B. (2003) Hyaluronan and CD44: Strategic players for cell-matrix interactions during chondrogenesis and matrix assembly. Birth Defects Research Part C: Embryo Today: Reviews, 69, 174-196. doi:10.1002/bdrc.10013
[33] Yatabe, T., Mochizuki, S., Takizawa, M., Chijiiwa, M., Okada, A., Kimura, T., Fujita, H., Toyama, Y. and Okada, Y. (2009) Hyaluronan inhibits expression of ADAMTS4 (aggrecanase-1) in human osteoarthritic chondrocytes. Annals of the Rheumatic Diseases, 68, 1051-1058. doi:10.1136/ard.2007.086884
[34] Julovi, S.M., Ito, H., Hishitani, K., Jackson, C.J. and Nakamura, T. (2010) Hyaluronan inhibits matrix metallo-proteinase-13 in human arthritic chondrocytes via CD44 and P38. Journal of Orthopaedic Research, 29, 258-264. doi:10.1002/jor.21216
[35] Park, H., Temenoff, J.S., Tabata, Y., Caplan, A.I. and Mikos, A.G. (2007) Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering. Biomaterials, 28, 3217-3227. doi:10.1016/j.biomaterials.2007.03.030
[36] Liao, J., Guo, X., Allen, K.J.G., Kasper, F.K. and Mikos, A.G. (2010) Bioactive polymer/extracellular matrix scaffolds fabricated with a flow perfusion bioreactor for cartilage tissue engineering. Biomaterials, 31, 8911-8920. doi:10.1016/j.biomaterials.2010.07.110

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.