Symmetry Restoration by Acceleration

DOI: 10.4236/jmp.2012.311209   PDF   HTML   XML   4,464 Downloads   6,762 Views   Citations


The restoration of spontaneous symmetry breaking for a scalar field theory for an accelerated observer is discussed by the one-loop effective potential calculation and by considering the effective potential for composite operators. Above a critical acceleration, corresponding to the critical restoration temperature, Tc, for a Minkowski observer by Unruh relation, i.e. ac/2π=Tc, the symmetry is restored. This result confirms other recent calculations in effective field theories that symmetry restoration can occur for an observer with an acceleration larger than some critical value. From the physical point of view, a constant acceleration mimics a gravitational field and the critical acceleration to restore the spontaneous symmetry breaking corresponds to a huge gravitational effect which prevents boson condensation.

Share and Cite:

P. Castorina and M. Finocchiaro, "Symmetry Restoration by Acceleration," Journal of Modern Physics, Vol. 3 No. 11, 2012, pp. 1703-1708. doi: 10.4236/jmp.2012.311209.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] D. A. Kirzhnits and A. D. Linde, “Macroscopic Consequence of the Weinberg Model,” Physics Letters B, Vol. 42, No. 4, 1972, pp. 471-474. doi:10.1016/0370-2693(72)90109-8
[2] S. Weinberg, “Gauge and Global Symmetry at High Temperature,” Physical Review D, Vol. 9, No. 12, 1974, pp. 3357-3378. doi:10.1103/PhysRevD.9.3357
[3] L. Dolan and R. Jackiw, “Symmetry Behavior at Finite Temperature,” Physical Review D, Vol. 9, No. 12, 1974, pp. 3320-3341. doi:10.1103/PhysRevD.9.3320
[4] S. W. Hawking, “Particle Creation by Black Holes,” Communications in Mathematical Physics, Vol. 43, No. 3, 1975, pp. 199-220. doi:10.1007/BF02345020
[5] G. Denardo and E. Spallucci, “Symmetry Restoration in Conformally Flat Metric,” Nuovo Cimento A, Vol. 64, No, 1, 1981, pp. 15-26. doi:10.1007/BF02773363
[6] W. G. Unruh, “Notes on Black Hole Evaporation,” Physical Review D, Vol. 14, No. 4, 1976, p. 870. doi:10.1103/PhysRevD.14.870
[7] W. G. Unruh and N. Weiss, “Acceleration Radiation in Interacting Field Theories,” Physical Review D, Vol. 29, No. 8, 1984, p. 1656. doi:10.1103/PhysRevD.29.1656
[8] T. Ohsaku, “Dynamical Chiral Symmetry Breaking and its Restoration for an Accelerated Observer,” Physics Letters B, Vol. 599, No. 1-2, 2004, pp. 102-110. doi:10.1016/j.physletb.2004.08.019
[9] D. Ebert and V. Ch. Zhukovsky, “Restoration of Dynamically Broken Chiral and Color Symmetry for an Accelerated Observer,” Physics Letters B, Vol. 645, No. 2-3, 2007, pp. 267-274. doi:10.1016/j.physletb.2006.12.013
[10] K. Peeters and M. Zamaklar, “Dissociation by Acceleration,” Journal of High Energy Physics, Vol. 801, 2008, p. 38. doi:10.1088/1126-6708/2008/01/038
[11] J. M. Cornwall, R. Jackiw and E. Tomboulis, “Effective Action for Composite Operators,” Physical Review D, Vol. 10, No. 8, 1974, pp. 2428-2445. doi:10.1103/PhysRevD.10.2428
[12] L. C. B. Crispino, A. Higuchi and G. E. A. Matsas, “The Unruh Effect and its Applications,” Reviews of. Modern Physics, Vol. 80, No. 3, 2008, pp. 787-838. doi:10.1103/RevModPhys.80.787
[13] G. Amelino-Camelia and S.-Y. Pi, “Selfconsistent Improvement of the Finite Temperature Effective Potential,” Physical Review D, Vol. 47, No. 6, 1993, pp. 2356-2362. doi:10.1103/PhysRevD.47.2356
[14] P. Castorina, M. Consoli and D. Zappalà, “Finite Temperature Hartree-Fock Approximation to λφ4 Theory,” Physics Letters B, Vol. 201, No. 1, 1988, pp. 90-94. doi:10.1016/0370-2693(88)90086-X
[15] R. M. Cavalcanti, P. Giacconi, G. Pupillo and R. Soldati, “Bose-Einstein Condensation in the Presence of a Uniform Field and a Point-Like Impurity,” Physical Review A, Vol. 65, No. 5, 2002, pp. 53-60. doi:10.1103/PhysRevA.65.053606
[16] C. Barcelo, S. Liberati and M. Visser, “Analogue Gravity,” Living Reviews in Relativity, Vol. 4, No. 3, 2011, p. 12.
[17] A. Iorio and G. Lambiase, “The Hawking-Unruh Phenomenon on Graphene,” Physics Letters B, Vol. 716, No. 2, 2012, pp. 334-337. doi:10.1016/j.physletb.2012.08.023
[18] P. Castorina, D. Kharzeev and H. Satz, “Thermal Hadronization and Hawking-Unruh Radiation in QCD,” The European Physical Journal, Vol. 52, No. 1, 2007, pp. 187-201. doi:10.1140/epjc/s10052-007-0368-6
[19] F. Becattini, P. Castorina, A. Milov and H. Satz, “Prediction of Hadron Abundances in pp Collision at LHC,” Journal of Physics G, Vol. 38, No. 2, p. 25. doi:10.1088/0954-3899/38/2/025002
[20] P. Castorina, R. V. Gavai and H. Satz, “The QCD Phase Structure at High Baryon Density,” The European Physical Journal, Vol. 69, No. 1-2, 2010, pp. 169-178. doi:10.1140/epjc/s10052-011-1653-y

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.