Investigation of electronic structure of Nd2O3: Experiment and theory

DOI: 10.4236/ns.2012.410106   PDF   HTML     3,398 Downloads   5,515 Views   Citations


In the present paper, first ever experimental Compton profile of Nd2O3 have been measured using 137Cs Compton spectrometer at an intermediate resolution of 0.34 a.u. Theoretical profile are computed using PP-DFT-GGA, PP-DFT- LDA and PP-DFT-SOGGA within the frame work of LCAO scheme in, and are compared with experimental results. Theoretical anisotropies in directional Compton profiles are explained in term of degenerate states along the Fermi level.

Share and Cite:

Mohammad, F. , Ghaleb, A. , Jagrati, S. , Ahuja, B. and Bhamu, K. (2012) Investigation of electronic structure of Nd2O3: Experiment and theory. Natural Science, 4, 797-802. doi: 10.4236/ns.2012.410106.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Cooper, M.J. (1985) Compton scattering and electron momentum determination. Reports on Progress in Physics, 48, 415. doi:10.1088/0034-4885/48/4/001
[2] Cooper, M.J., Mijnarends, P.E., Shiotani, N., Sakai, N. and Bansil, A. (2004) X-ray Compton scattering. Oxford University Press, New York. doi:10.1093/acprof:oso/9780198501688.001.0001
[3] Kaplan, I.G, Barbiellini, B. and Bansil, A. (2003) Compton scattering beyond the impulse approximation. Physical Review B, 68, 235104. doi:10.1103/PhysRevB.68.235104
[4] Zhang, F.X., Lang, M., Wang, J.W., Becker, U., Ewing, R.C. (2008) Structural phase transitions of cubic Gd2O3 at high pressures. Physical Review B, 78, 064114. doi:10.1103/PhysRevB.78.064114
[5] Faucher, M., Pannetier, J., Charreire, Y. and Caro, P. (1982) Refinement of the Nd2O3 and Nd2O2S structures at 4 K. Acta Crystallographica Section B, 38, 344. doi:10.1107/S056774088200288X
[6] Prokofiev, A.V., Shelykh, A.I. and Melekh, B.T. (1996) Periodicity in the band gap variation of Ln2X3 (X = O, S, Se) in the lanthanides series. Journal of Alloys and Compounds, 242, 41. doi:10.1016/0925-8388(96)02293-1
[7] Kimura, S., Arai, F. and Ikezawa, M., (2000), Optical study and electronic structure of rare earth sesquixoides. Journal of the Physical Society of Japan, 69, 3451. doi:10.1143/JPSJ.69.3451
[8] Hirosaki, N., Ogata, S. and Kocer, C. (2003) Ab intio calculation of the crystal structure of the lanthanide Ln2O3 sesquioxides. Journal of Alloys and Compounds, 351, 31. doi:10.1016/S0925-8388(02)01043-5
[9] Petit, L., Svane, A., Szotek, Z. and Temmerman, W.M. (2005) First principle study of rare earth oxides. Physical Review B, 72, 205118. doi:10.1103/PhysRevB.72.205118
[10] Singh, N., Saini, S.M., Nautiyal, T. and Auluck, S. (2006) Electronic structure and optical properties of rare earth sesquioxides (R2O3, R = La, Pr and Nd). Journal of Applied Physics, 100, 083525. doi:10.1063/1.2353267
[11] Ahuja, B.L., Sharma, M. and Mathur, S. (2006) Anisotropy in the momentum density of tantalum. Nuclear Instruments and Methods in Physics Research Section B, 244, 419. doi:10.1016/j.nimb.2005.10.011
[12] Timms, D.N. (1989) Ph.D. Thesis, University of Warwick, England.
[13] Felsteiner, J., Pattison, P. and Cooper, M.J. (1974) Effect of multiple scattering on experimental Compton profiles: A Monte Carlo calculation. Philosophical Magazine, 30, 537. doi:10.1080/14786439808206579
[14] Biggs, F., Mendelsohn, L.B. and Mann, J.B. (1975) Hartree—Fock Compton profiles. Atomic Data and Nuclear Data Tables, 16, 201. doi:10.1016/0092-640X(75)90030-3
[15] Dovesi, R., Saunders, V.R., Roetti, C., Orlando, R., Zicovich-Wilson, C.M., Pascale, F., Civalleri, B., Doll, K., Harrison, N.M., Bush, I.J., D’Arco, Ph. and Llunell, M., (2009) CRYSTAL09 user’s manual, University of Torino, Torino.
[16] Dovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V.R. and Zicovich-Wilson, C.M. (2005) CRYSTAL: A computational tool for the ab-initio study of the electronic properties of crystals. Zeitschrift für Kristallographie, 220, 571. doi:10.1524/zkri.220.5.571.65065
[17] Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalised gradient approximation made simple. Physical Review Letters, 77, 3865. doi:10.1103/PhysRevLett.77.3865
[18] Hammer, B., Hansen, L.B. and Norskov, J.K. (1999) Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Physical Review Letters, 59, 7413.
[19] Zhao, Y. and Truhlar, D.G. (2008) Construction of a generalized gradient approximation by restoring thedensity-gradient expansion and enforcing a tight Lieb-Oxford bound. The Journal of Physical Chemistry B, 128, 184109. doi:10.1063/1.2912068
[20] Towler, M.D., Zupan, A. and Causa, M. (1996) Density functional theory in periodic system using local Gaussian basis sets. Computer Physics Communications, 98, 181. doi:10.1016/0010-4655(96)00078-1
[21] Wu, Z. and Cohen, R.E. (2006) More accurate generalised gradient approximation for solids. Physical Review B, 73, 235116. doi:10.1103/PhysRevB.73.235116
[22] Dolg, M., Stoll, H., Savin, A., and Preuss, H. (1989) Energy-adjusted pseudopotentials for the rare earth elements. Theoretical Chemistry Accounts, 75, 173. doi:10.1007/BF00528565
[23] Dolg, M., Stoll, H. and Preuss, H. (1993) A combination of quasirelativistic pseudopotential and ligand field calculations for lanthanoid compounds. Theoretical Chemistry Accounts, 85, 441. doi:10.1007/BF01112983
[24] Johnson, D.D. (1998) Modified Broyden’s method for accelerating convergence in self-consistent calculations. Physical Review B, 38, 12807. doi:10.1103/PhysRevB.38.12807

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.