Effect of dietary vanadium on small intestinal morphology in broilers

Abstract

The objective of this study was to determine the effects of dietary vanadium on small intestinal morphology of broilers by the methods of light microscopy (LM) and transmission electron microscopy (TEM). A total of 420 one-day-old avian broilers were divided into six groups (seven replicates in each group and ten broilers in each replicate) and fed on a control diet or the same diet supplemented with 5, 15, 30, 45 and 60 mg/kg vanadium in the form of ammonium metavanadate for 42 days. In comparison with those in the control group, the intestinal villus heights were decreased (P < 0.05 or P < 0.01) in the 30, 45 and 60 mg/kg groups, and crypt depths and villus height/crypt depth ratio were decreased in the 45 and 60 mg/kg groups. Ultrastructurally, the microvilli were apparently sparse and short, and the numbers of lysosomes were increased in abovementioned three intestines in the 45 and 60 mg/kg groups at 42 days of age. In conclusion, dietary vanadium in excess of 30 mg/kg could alter the villus height, crypt depth, villus height/crypt depth ratio and ultrastructure, which might impact the development of small intestines in broilers.

Share and Cite:

Wang, K. , Cui, H. , Peng, X. , Zuo, Z. , Fang, J. , Deng, J. , Deng, Y. , Cui, W. and Wu, B. (2012) Effect of dietary vanadium on small intestinal morphology in broilers. Health, 4, 667-674. doi: 10.4236/health.2012.49105.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Mukherjee, B., Patra, B. and Mahapatra, S. (2004) Vanadium—An element of atypical biological significance. Toxicology Letters, 150, 135-143. doi:10.1016/j.toxlet.2004.01.009
[2] Milena, J.S., Snezana, U.M., Ivanka, H.A., Marija, T. and Predrag, D. (2007) Compounds of Mo, V and W in biochemistry and their biomedical activity. Journal of Trace Elements in Medicine and Biology, 21, 8-16. doi:10.1016/j.jtemb.2006.11.004
[3] Dubyak, G.R. and Kleinzeller, A. (1980) Insulin-mimetic effects of vanadate in isolated rat adipocytes. Journal of Biological Chemistry, 255, 5306-5312.
[4] Madsen, K.L., Arisno, D. and Fedorak, R.N. (1995) Vanadate treatment rapidly improves glucose transport and activates 6-phosphofructo-l-kinase in diabetic rat intestine. Diabetologia, 38, 403-412. doi:10.1007/BF00410277
[5] Domingo, J.L. (2002) Vanadium and tungsten derivatives as antidiabetic agents. Biological Trace Element Research, 88, 97-112. doi:10.1385/BTER:88:2:097
[6] Norgaard, A., Kjeldsev, K. and Hansen, O. (1983) A simple and rapid method for the determination of the number of 3H-ouabain binding sites in biopsies of skeletal muscle. Biochemical and Biophysical Research Communications, 111, 319-325. doi:10.1016/S0006-291X(83)80154-5
[7] Bahdan, R.N. (1984) Mechanisms of action of Vanadium. Annual Review of Pharmacology and Toxicology, 24, 501-507. doi:10.1146/annurev.pa.24.040184.002441
[8] Schmitz, W. and Scholz, H. (1982) Effcet of Vanadium in the +5, +4 and +3 oxidation states on cardiac force of contraction, adenylate cyclase and (Na+, K+)-ATPase activity. Biochemical Pharmacology, 31, 3853-3860. doi:10.1016/0006-2952(82)90302-1
[9] Bishayee, A. and Chatterjee, M. (1995) Time course effects of vanadium supplement on cytosolic reduced glutathione level and glutathione S-transferase activity. Biological Trace Element Research, 48, 275-285. doi:10.1007/BF02789409
[10] Cui, W., Cui, H., Peng, X., Fang, J., Zuo, Z., Liu, X. and Wu, B. (2011) Dietary excess vanadium induces lesions and changes of cell cycle of spleen in broilers. Biological Trace Element Research, 143, 949-956. doi:10.1007/s12011-010-8938-0
[11] Liu, J., Cui, H., Liu, X., Peng, X., Deng, J., Zuo, Z., Cui, W., Deng, Y. and Wang, K. (2012) Dietary high Vanadium causes Oxidative damage-induced renal and hepatic toxicity in broilers. Biological Trace Element Research, 145, 189-200. doi:10.1007/s12011-011-9185-8
[12] Cui, W., Cui, H., Peng, X., Fang, J., Zuo, Z., Liu, X. and Wu, B. (2012) Dietary vanadium induces lymphocyte apoptosis in the bursa of Fabricius of broilers. Biological Trace Element Research, 146, 59-67. doi:10.1007/s12011-011-9215-6
[13] Liu, X., Cui, H., Peng, X., Fang, J., Cui, W. and Wu, B. (2012) Suppression of renal cell proliferation, induction of apoptosis and cell cycle arrest: Cytotoxicity of vanadium in broilers. Health, 4, 101-107. doi:10.4236/health.2012.42016
[14] Wang, K., Cui, H., Deng, Y., Peng, X., Fang, J., Zuo, Z. and Cui, W. (2012) Effect of dietary Vanadium on the Ileac T-cells and contents of cytokines in broilers. Biological Trace Element Research, 147, 113-119. doi:10.1007/s12011-011-9274-8
[15] Deng, Y., Cui, H., Peng, X., Fang, J., Wang, K., Cui, W. and Liu, X. (2012) Dietary Vanadium induces Oxidative stress in the intestine of broilers. Biological Trace Element Research, 145, 52-58. doi:10.1007/s12011-011-9163-1
[16] Deng, Y., Cui, H., Peng, X., Fang, J., Wang, K., Cui, W. and Liu, X. (2011) Effect of dietary Vanadium on cecal tonsil T-cell Subsets and IL-2 contents in broilers. Biological Trace Element Research, 144, 647-656. doi:10.1007/s12011-011-9018-9
[17] Buraczewska, L., ?wi?ch, E., Tu?nio, A., Taciak, M., Ceregrzyn, M. and Korczyński, W. (2007) The effect of pectin on amino acid digestibility and digesta viscosity, motility and morphology of the small intestine, and on N-balance and performance of young pigs. Livestock Science, 109, 53-56. doi:10.1016/j.livsci.2007.01.058
[18] Mette, S., Lise, D. and Bent, B. (2007) Pre-weaning eating activity and morphological parameters in the small and large intestine of piglets. Livestock Science, 108, 128-131. doi:10.1016/j.livsci.2007.01.017
[19] Jin, Y., Peng, Y., Fenghua, L., Cheng, G., Guo, K., Lu, An., Zhu, X., Luan, W. and Xu, J. (2010) Effect of heat stress on the porcine small intestine: A morphological and gene expression study. Comparative Biochemistry and Physiology, 156, 119-128. doi:10.1016/j.cbpa.2010.01.008
[20] Elbr?nd, V., Skadhauge, E., Thomsen, L. and Dantzer, V. (1998) Morphological adaptations to induced changes in transepithelial Na-transport in chicken lower intestine, coprodeum: A study of resalination, aldosterone stimulation, and epithelial turn over. Cell Tissue Research, 292, 543-552. doi:10.1007/s004410051083
[21] Elbr?nd, V., Dantzer, V., and Skadhauge, E. (1999) Differences in epithelial morphology correlate to Na-transport. A study of the proximal, mid and distal region of the coprodeum from hens on high and low NaCl diet. Journal of Morphology, 239, 75-86. doi:10.1002/(SICI)1097-4687(199901)239:1<75::AID-JMOR5>3.0.CO;2-D
[22] Zitnan, R., Kuhla, S., Nurnberg, K. and Schonhusen, U. (2003) Influence of the diet on the morphology of ruminal and intestinal mucosa and on intestinal carbohydrate levels in cattle. Veterinatni Medicina, 48, 177-182.
[23] Wang, Y., Xu, M., Wang, F., Yu, Z.P., Yao, J.H., Zan, L.S. and Yang, F.X. (2009) Effect of dietary starch on rumen and small intestine morphology and digesta pH in goats. Livestock Science, 122, 48-52. doi:10.1016/j.livsci.2008.07.024
[24] Sonna, L., Fujita, J., Gaffin, S., Gaffin, S.L. and Craig M.L. (2002) Invited review: Effects of heat and cold stress on mammalian gene expression. Journal of Applied Physiology, 92, 1725-1742.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.