Impact of Germination on Biochemical and Antioxidant Enzymes of Ceiba pentandra (Kapok) Seeds

Abstract

Changes in biochemical components and the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione peroxidase (GPx) and ascorbate oxidase (AO) in germinating and non-germinating seeds of Ceiba pentandra were evaluated in the present study. Results show that the levels of proteins and total soluble sugars are high and reducing sugars and free amino acids are low in non-germinating seeds whereas the contrary was observed in 4 days old germinating seeds. Enzymatic antioxidants like SOD, CAT, POD, GPx and AO showed enhanced activities during seed germination. Our findings indicate that three days after germination of Ceiba pentandra seeds, their palatability significantly improve. The nutritive utilization of protein and carbohydrates along with efficient participation of antioxidant mechanisms, including the synergistic activities of the different types of SOD, CAT, POD, GPx and AO, might play an important role during seed germination. The conclusion of this inquiry is that the germinating seeds can serve as natural antioxidant agents, setting ahead the possibility of employing them for therapeutic purposes.

Share and Cite:

C. Kiran, D. Rao, N. Sirisha and T. Rao, "Impact of Germination on Biochemical and Antioxidant Enzymes of Ceiba pentandra (Kapok) Seeds," American Journal of Plant Sciences, Vol. 3 No. 9, 2012, pp. 1187-1192. doi: 10.4236/ajps.2012.39144.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. Bailly, “Active Oxygen Species and Antioxidants in Seed Biology,” Seed Science Research, Vol. 14, No. 2, 2004, pp. 93-107. doi:10.1079/SSR2004159
[2] K. Apel and H. Hirt, “Reactive Oxygen Species: Metabolism, Oxidative Stress, and Signal Transduction,” Annual Review of Plant Biology, Vol. 55, 2004, pp. 373-399. doi:10.1146/annurev.arplant.55.031903.141701
[3] C. Gapper and L. Dolan, “Control of Plant Development by Reactive Oxygen Species,” Plant Physiology, Vol. 141, No. 2, 2006, pp. 341-345. doi:10.1104/pp.106.079079
[4] O. Blokhina, E. Virolainen and K. V. Fagerstedt, “Antioxidants, Oxidative Damage and Oxygen Deprivation Stress: A Review,” Annals of Botany, Vol. 91, No. 2, 2003, pp. 179-194. doi:10.1093/aob/mcf118
[5] M. T. Le Paage-Degivry and G. Garello, “Embryo Dormancy in Taxus baccta: Influence of Culture Medium on Initiation of Germination,” Plant Physiology, Vol. 29, 1973, pp. 204-207.
[6] J. A. Plummer and D. T. Bell, “The Effect of Temperature, Light and Gibberellic Acid (GA3) on the Germination of Australian Everlasting Daisics (Asteraceae, Tribe Inulae),” Australian Journal of Botany, Vol. 43, No. 1, 1995, pp. 93-100. doi:10.1071/BT9950093
[7] N. Rajaram and K. Janardhanan, “Chemical Composition and Nutritional Evaluation of Certain Under-Exploited Vigna spp.,” Food Sciences and Nutrition, Vol. 42, No. 4, 1990, pp. 213-221.
[8] O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, “Protein Measurement with Folin Phenol Reagent,” The Journal of Biological Chemistry, Vol. 193, No. 1, 1951, pp. 265-275.
[9] M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers and F. Smith, “Colorimetric Method for Determination of Sugars and Related Substances,” Analytical Chemistry, Vol. 28, No. 3, 1956, pp. 350-356. doi:10.1021/ac60111a017
[10] S. Moore and W. H. Stein, “A Modified Ninhydrin Reagent for the Photometric Determination of Amino Acids and Related Compounds,” The Journal of Biological Chemistry, Vol. 211, 1954, pp. 907-913.
[11] Beuchamp and B. C. Fedovich, “Superoxide Dismutase assay and an Assay Applicable to Acrylamide Gel,” Analytical Biochemistry, Vol. 10, 1976, pp. 276-287.
[12] C. Chance and Maehly, “Assay of Catalase and Peroxidase,” Methods in Enzymology, Vol. 11, 1995, pp. 764-775.
[13] C. P. Malik and M. B. Singh, “Plant Enzymology and Histoenzymology,” Kalyani Publishers, New Delhi, 1980.
[14] J. T. Rotruck, A. L. Pope, H. E. Ganther, A. B. Swanson, D. G. Hafeman and W. G. Hoekstra, “Selenium: Biochemical Role as a Component of Glutathione Peroxidase,” Science, Vol. 179, No. 4073, 1973, pp. 588-590. doi:10.1126/science.179.4073.588
[15] H. M. Vines and M. F. Oberbacher, “Response of Oxidation and Phosphorylation in Citrus Mitochondria to Arsenate,” Nature, Vol. 206, No. 981, 1995, pp. 319-320. doi:10.1038/206319b0
[16] A. Ali Al-Heal, “Growth and Protein Content of Cassia senna L. Seedlings,” Journal of the King Saud University —Science, Vol. 4, No. 1, 1992, pp. 5-13.
[17] M. Olczak, E. Niziol, W. Widlak and B. Morawiecka, “The Activity of Acid Phosphatase and the Level of Storage Proteins during the Early Stages of Germination of Lupinus luteus L. and Lupinus angustifolius L. Seeds,” Acta Societatis Botanicorum Poloniae, Vol. 61, 1992, pp. 177-185.
[18] A. L. Tan-Wilson, X. W. Liu, R. Y. Chen, X. Q. Qi and K. A. Wilson, “An Acidic Amino Acid-Specific Protease from Germinating Soybeans,” Phytochemistry, Vol. 42, No. 2, 1996, pp. 313-319. doi:10.1016/0031-9422(95)00896-9
[19] I. C. Obizaba and H. I. Egbuna, “Effect of Germination and Fermentation on the Nutritional Quality of Bambara Nut (Voandzeia subterranea L. Thouans) and Its Product (Milk),” Plant Foods for Human Nutrition, Vol. 42, No. 1, 1992, pp. 13-23. doi:10.1007/BF02196068
[20] S. Y. Giami, B. S. Chibor, K. E. Edebiri and S. C. Achinewhu, “Changes in Nitrogenous and Other Chemical Constituents, Protein Fractions and in Vitro Protein Digestibility of Germinating Fluted Pumpkin (Telfairia occidentalis Hook) Seed,” Plant Foods for Human Nutrition, Vol. 53, No. 4, 1999, pp. 333-342. doi:10.1023/A:1008049712256
[21] R. Balasaraswathi and S. Sadasivam, “Changes in Oil, Sugar and Nitrogenous Components during Germination of Sunflower Seeds Helianthus annuus,” Plant Foods for Human Nutrition, Vol. 51, No. 1, 1997, pp. 71-77. doi:10.1023/A:1007924026633
[22] T. V. Jaya and L. V. Venkataraman, “Changes in Carbohydrate Constituents of Chickpea and Greengram during Germination,” Food Chemistry, Vol. 7, No. 2, 1981, pp. 95-104. doi:10.1016/0308-8146(81)90054-6
[23] S. Kon, A. C. Olson, D. P. Frederick, S. D. Eggling and J. R. Wagner, “Effect of Different Treatments on Phytate and Soluble Sugars in California Small White Beans (Phaseolus vulgaris),” Journal of Food Science, Vol. 38, No. 2, 1973, pp. 215-217. doi:10.1111/j.1365-2621.1973.tb01389.x
[24] R. Mittler, S. Vanderauwera, M. Gollery and F. Van Breusegem, “Reactive Oxygen Gene Network of Plants,” Trends Plant Science, Vol. 9, No. 10, 2004, pp. 490-498. doi:10.1016/j.tplants.2004.08.009
[25] V. V. Rogozhin, V. V. Verkhoturov and T. T. Kurilyuk, “The Antioxidant System of Wheat Seeds during Germination,” Biology Bulletin, Vol. 28, No. 2, 2001, pp. 126-133. doi:10.1023/A:1009454713659
[26] T. Du?i?, I. Liri?-rajli?, A. Mitrovi? and K. Radoti?, “Activities of Antioxidant Systems during Germination of Chenopodium rubrum Seeds,” Biologia Planttarum, Vol. 47, No. 4, 2003, pp. 527-533.
[27] N. G. Lewis and E. Yamamoto, “Lignin: Occurrence, Biosynthesis and Biodegradation,” Annual Review of Plant Physiology and Plant Molecular Biology, Vol. 41, 1990, pp. 455-496.
[28] F. Passardi, C. Cosio, C. Penel and C. Dunand, “Peroxidases Have More Functions than a Swiss Army Knife,” Plant Cell Reports, Vol. 24, No. 5, 2005, pp. 255-265. doi:10.1007/s00299-005-0972-6
[29] H. Laloue, F. Weber-Lofti, A. Lucau-Danila and P. Guillemat, “Identification of Ascorbate and Guaiacol Peroxidase in Needle Chloroplasts of Spruce Trees,” Plant Physiology and Biochemistry, Vol. 35, No. 5, 1997, pp. 341-346.
[30] T. Kawano, “Roles of the Reactive Oxygen Species-Generating Peroxidase Reactions in Plant Defence and Growth Induction,” Plant Cell Reports, Vol. 21, No. 9, 2003, pp. 829-837.
[31] O. Omidiji, J. Okpuzor and O. Otubu, “Peroxidase Activity of Germin Ating Sorghum bicolor Grains: Effect of Some Cations,” Journal of the Science of Food and Agriculture, Vol. 82, No. 15, 2003, pp. 1881-1885. doi:10.1002/jsfa.1144
[32] ?. Wojtyla, M. Garnczarska, T. Zalewski, W. Bednarski, L. Ratajczak and S. A. Jurga, “Comparative Study of Water Distribution, Free Radical Production and Activation of Antioxidative Metabolism in Germinating Pea Seeds,” Journal of Plant Physiology, Vol. 163, No. 12, 2006, pp. 1207-1220. doi:10.1016/j.jplph.2006.06.014
[33] F. A. Loewus, “L-Ascorbic Acid: Metabolism, Biosynthesis, Function,” In: P. K. Stumpf and E. E. Conn, Eds., The Biochemistry of Plants: A Comprehensive Treatise, Academic Press, New York, 1980, pp. 77-101.
[34] O. Arrigoni, “Ascorbate System in Plant Development,” Journal of Bioenergetics and Biomembranes, Vol. 26, No. 4, 1994, pp. 407-419.
[35] N. Kato and M. Esaka, “Changes in Ascorbate Oxidase Gene Expression and Ascorbate Levels in Cell Division and Cell Elongation in Tobacco Cells,” Physiologia Plantarum, Vol. 105, No. 2, 1999, pp. 321-329. doi:10.1034/j.1399-3054.1999.105218.x
[36] L. S. Lin and J. E. Varner, “Expression of Ascorbic Acid Oxidase in Zucchini Squash (Curcubito pepo L.),” Plant Physiology, Vol. 96, No. 1, 1991, pp. 696-976. doi:10.1104/pp.96.1.159
[37] G. Diallinas, I. Pateraki, M. Sanmartin, A. Scossa, E. Stilanou, N. J. Panopoulos and A. K. Kanellis, “Melon Ascorbate Oxidase: Cloning of a Multigene Family, Induction during Fruit Development and Repression by Wounding,” Plant Molecular Biology, Vol. 34, No. 5, 1997, pp. 759-770. doi:10.1023/A:1005851527227
[38] N. Kato and M. Esaka, “cDNA Cloning and Gene Expression of Ascorbate Oxidase in Tobacco,” Plant Molecular Biology, Vol. 30, No. 4, 1996, pp. 833-837. doi:10.1007/BF00019015

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.