Share This Article:

Jamun (Syzygium cumini (L.)): A Review of Its Food and Medicinal Uses

Full-Text HTML Download Download as PDF (Size:318KB) PP. 1100-1117
DOI: 10.4236/fns.2012.38146    12,815 Downloads   24,112 Views   Citations


Eugenia jambolana Lam., commonly known as black plum or “jamun” is an important medicinal plant in various traditional systems of medicine. It is effective in the treatment of diabetes mellitus, inflammation, ulcers and diarrhea and preclinical studies have also shown it to possess chemopreventive, radioprotective and antineoplastic properties. The plant is rich in compounds containing anthocyanins, glucoside, ellagic acid, isoquercetin, kaemferol and myrecetin. The seeds are claimed to contain alkaloid, jambosine, and glycoside jambolin or antimellin, which halts the diastatic conversion of starch into sugar. The present review has been primed to describe the existing data on the information on traditional and medicinal use.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

S. Swami, N. Thakor, M. Patil and P. Haldankar, "Jamun (Syzygium cumini (L.)): A Review of Its Food and Medicinal Uses," Food and Nutrition Sciences, Vol. 3 No. 8, 2012, pp. 1100-1117. doi: 10.4236/fns.2012.38146.


[1] P. Warrier, V. Nambiar and C. Ramankutty, “Indian Medical Plants,” Orient Longman Ltd., Hyderabad, Vol. 5, 1996, pp. 225-228.
[2] H. Sagrawat, A. Mann and M. Kharya, “Pharmacological Potential of Eugenia Jambolana: A Review,” Pharmacogenesis Magazice, Vol. 2, 2006, pp. 96-104
[3] P. Wester, “Journal of food Plants of the Philippines,” Bulletin 39, 3rd Edition, Philippine Department of Agriculture & Natural Research, Burette of Agriculture, Manila, 1924.
[4] H. Munsell, L. Williams, L. Guild, C. Troescher, G. Nightingale and R. Harris, “Composition of Food Plants of Central America,” Food Research, Vol. 14, No. 2, 1949, pp. 144-164. doi:10.1111/j.1365-2621.1949.tb16218.x
[5] A. Ranjan, A. Jaiswal and B. Raja, “Enhancement of Syzygium cumini (Indian Jamun) Active Constituents by Ultra-Violent (UV) Irradiation Method,” Scientific Research and Essays, Vol. 6, No. 12, 2011, pp. 2457-2464.
[6] E. Giovannucci, E. Rimm and Y. Liu, “A Prospective Study of Tomato Products, Lycopene, and Prostate Cancer Risk,” Journal of Natural and Cancer Natural, Vol. 94, No. 5, 2002, pp. 391-398
[7] K. Lock, D. Stuckler, K. Charlesworth and M McKee, “Potential Uses and Health Effects of Indian Raspberry,” British Homeopathic Journal, Vol. 339, 2009, pp. 459- 452.
[8] A. Kumar, T. Jayachandran and P. Aravindhan, “Neutral Components in the Leaves and Seeds of Syzygium cumi- ni,” African Journal of Pharmacy and Pharmacology, Vol. 3, No. 11, 2009, pp. 560-561.
[9] The US Department of Agriculture and the US Department of Health and Human, “Dietary Guidelines for Americans,” 2010.
[10] M. Baliga, P. Bhat and B. Baliga, “Phytochemistry, Traditional Uses and Pharmacology of Eugenia jambolana Lam. (Black Plum): A Review,” Food Research International, Vol. 44, No. 7, 2011, pp. 1776-1789. doi:10.1016/j.foodres.2011.02.007
[11] A. Benthall, “Trees of Calcutta and Its Neigh borhood. Thacker,” Spink & Co. Ltd., Calcutta, 1946.
[12] W. H. Brown, “Wild Food Plants of the Philippines,” Bulletin 21, Department of Agriculture and Natural Resources, Bureau of Printing, Manila, 1920.
[13] G. Lai, G. Siddappa and G. L. Tandon, “Preservation of Fruits and Vegetables,” Indian Council of Agriculture Research, New Delhi, 1960.
[14] W. Kennard and H. Winters, “Some Fruits and Nuts for the Tropics,” Misc. Pub. 801, Agricultural Research Service, US Dept. Agric, Washington, 1960.
[15] I. H. Burkill, “A Dictionary of the Economic Products of the Malay Peninsula,” Vol. 1, Crown Agents for the Colonies, London, 1935.
[16] E. Quisumbing, “Medicinal Plants of the Philip Pines,” Tech. Bui. 16, Department of Agriculture and Natural Resource, Manila, 1951.
[17] C. D. Miller, K. Bazore and M. Bartow, “Fruits of Hawaii,” 2nd Edition, University of Hawaii Press, Hawaii, 1955.
[18] O. W. Barrett, “The Tropical Crops,” The Macmillan Co., New York, 1928.
[19] W. Harris, “Notes on Fruits and Vegetables in Jamaica,” Government Printing Office, Kingston, 1913.
[20] J. Dastur, “Useful Plants of India and Pakistan,” 2nd Edition, D. B. Taraporevala Sons & Co., Mumbai, 1943.
[21] R. Namasivayam, B. Ramachandrani and M. Deecaraman, “Effect of Aqueous Extract of Syzygium cumini Pulp on Antioxidant Defense System in Streptozotocin Induced Diabetic Rats,” International Journal of Post Harvest Technology, Vol. 7, 2008, pp. 137-145.
[22] A. Ratsimamanga, A. Loiseau and S. Ratsimamanga, “Action of a Hypoglycemic Agent Found in the Young Bark of Eugenia jambolania [sic] (Myrtaceae) on Induced Hyperglycemia of the Rabbit and Continuation of Its Purification,” Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences D: Sciences Naturelles, Vol. 277, 1973, pp. 2219-2222.
[23] N. Chaudhuri, A. Pal and S. Gomes, “Anti-Inflammatory and Related Action of Syzygium cumini Seed Extract,” Phytotherapy Research, Vol. 4, No. 2, 1990, pp. 5-10. doi:10.1002/ptr.2650040103
[24] P. Prince and M. Venon, “Effect of Syzigium cumini in Plasma Antioxidants on Alloxan-Induced Diabetes in Rats,” Journal of Clinical Biochemistry and Nutrition, Vol. 25, No. 2, 1998, pp. 81-86. doi:10.3164/jcbn.25.81
[25] G. Sepaha and S. Bose, “Clinical Observations on the Antidiabetic Properties of Pterocarpus marsupium and Eugenia jambolana,” Journal of the Indian Medical Association, Vol. 27, 1956, pp. 388-391.
[26] Helmstadter, “Syzygium cumini (L.) Skeels (Myrtaceae) Against Diabetes: 125 Years of Research,” Pharmazie, Vol. 63, No. 2, 2008, pp. 91-101.
[27] J. Giri, T. Sathidevi and N. Dushyanth, “Effect of Jamun Seed Extract on Alloxan Induced Diabetes in Rats,” Journal of the Diabetic Association of India, Vol. 25, 1985, pp. 115-119.
[28] K. Reynertson. A. Basile and M. J. Kennelly, “Antioxidant Potential of Seven Mystaceous Fruits,” Ethnobotany Research and Applications, Vol. 3, 2005, pp. 25-35
[29] S. K. Jain, “Dictonary of Indian Folk Medicine and Ethnobotany,” Deep Publications Paschimvihar, New Delhi, 1991.
[30] D. C. Damasceno, G. T. Volpato and I. D. Calderon, “Study of Averrhoa carambola and Eugenia jambolana Extracts Purchased from Manipulation Drug Store on the Experimental Diabetes,” Revista Brasileira de Toxicologia, Vol. 15, 2002, pp. 9-14.
[31] S. B. Sridhar, U. D. Sheetal and M. R. Pai, “Preclinical Evaluation of the Antidiabetic Effect of Eugenia jambolana Seed Powder in Streptozotocin-Diabetic Rats,” Brazilian Journal of Medical and Biological Research, Vol. 38, No. 3, 2005, pp. 463-468. doi:10.1590/S0100-879X2005000300018
[32] K. Ravi, S. Rajasekaran and S. Subramanian, “Hypoglycemic Effect of Eugenia jambolana Seed Kernels on Streptozotocin-Induced Diabetes in Rats,” Pharmaceutical Biology, Vol. 41, No. 8, 2003, pp. 598-603. doi:10.1080/13880200390501929
[33] S. B. Sharma, A. Nasir and K. M. Prabhu, “Hypoglycaemic and Hypolipidemic Effect of Ethanolic Extract of Seeds of Eugenia jambolana in Alloxan-Induced Diabetic Rabbits,” Journal of Ethnopharmacology, Vol. 85, No. 2, 2003, pp. 201-206. doi:10.1016/S0378-8741(02)00366-5
[34] S. B. Sharma, A Nasir and K. M. Prabhu, “Antihyperglycemic Effect of the Fruit-Pulp of Eugenia jambolana in Experimental Diabetes Mellitus,” Journal of Ethnopharmacology, Vol. 104, 2006, pp. 367-373. doi:10.1016/j.jep.2005.10.033
[35] K. Ravi, B. Ramachandran and S. Subramanian, “Protective Effect of Eugenia jambolana Seed Kernel on Tissue Antioxidants in Streptozotocin-Induced Diabetic Rats,” Biological & Pharmaceutical Bulletin, Vol. 27, No. 8, 2009, pp. 1212-1217. doi:10.1248/bpb.27.1212
[36] V. Vikrant, J. K. Grover and N. Tandon, “Treatment with Extracts of Momordica Charantia and Eugenia Jambolana Prevents Hyperglycemia and Hyperinsulinemia in Fructosefed Rats,” Journal of Ethnopharmacology, Vol. 76, No. 2, 2001, pp. 139-143. doi:10.1016/S0378-8741(01)00218-5
[37] Y. Srivastava, H. Venkatakrishna-Bhatt and O. P. Gupta, “Hypoglycemia Induced by Syzygium cumini Linn Seeds in Diabetes Mellitus,” Asiam Medical Journal, Vol. 26, No. 7, 1983, pp. 489-491.
[38] A. Gordon and E. Jungfer, “Phenolic Constituents and Antioxidant Capacity of Four Underutilized Fruits from the Amazon Region,” Journal of Agricultural and Food Chemistry, Vol. 59, 2011, pp. 7688-7699. doi:10.1021/jf201039r
[39] F. Adelia, C. Marcella and Z. Mercadante, “Identification of Bioactive Compounds from Jambolao (Syzygium cumini) and Antioxidant Capacity Evaluation in Different pH Conditions,” Food Chemistry, Vol. 126, No. 4, 2011, pp. 1571-1578. doi:10.1016/j.foodchem.2010.12.007
[40] J. Kubola, S. Siriamornpun and N. Meeso, “Phytochemicals, Vitamin C and Sugar Content of Thai Wild Fruits,” Food Chemistry, Vol. 126, No. 3, 2011, pp. 972-981. doi:10.1016/j.foodchem.2010.11.104
[41] B. Chaudhary and K. Mukhopadhyay, “Syzygium cumini (L.) Skeels: A Potential Source of Nutraceuticals,” International Journal of Pharmacy and Biological Sciences, Vol. 2, No. 1, 2012, pp. 46-53.
[42] A. C. Simoes-Pires, S. Vargas, A. Marston, et al., “Ellagic Acid Derivatives from Syzygium cumini Stem Bark: Investigation of Their Antiplasmodial Activity,” Natural Product Communications, Vol. 4, No. 10, 2009, pp. 1371- 1376.
[43] S. Sapana, V. Jadhav and V. Kadam, “Development and Validation of HPTLC Method for Determination of 3-Hydroxy Androstane [16, 17-C] (6'methyl, 2'-1-hydroxy-isopropene-1-yl) 4,5,6 H Pyran in Jambul Seed (Syzygium cumini),” International Journal of PharmTech Research, Vol. 1, 2009, pp. 1129-1135.
[44] M. Qurat and M. Ali, “Prawez, Lignan Derivatives from the Stem Bark of Syzygium cumini (L.) Skeels,” Natural Product Research, Vol. 23, 2009, pp. 422-430. doi:10.1080/14786410802038697
[45] L. Liya, Z. Yanjun and S. Navindra, “Structure of Anthocyanins from Eugenia jambolana Fruit,” Natural Product Communications, Vol. 4, No. 2, 2009, pp. 217-219.
[46] S. Gowri, S. Vasantha and K. Phytochemical, “Screening and Antibacterial Activity of Syzygium cumini (L.) (Myrtaceae) Leaves Extracts” International Journal of PharmTech Research, Vol. 2, No. 2, 2010, pp. 1569- 1573.
[47] A. Reynertson, Y. Hui and B. Jiang, “Quantitative Analysis of Antiradical Phenolic Constituents from 4 Teen Edible Myrtaceae Fruits,” Food Chemistry, Vol. 109, 2008, pp. 883-890. doi:10.1016/j.foodchem.2008.01.021
[48] E. F. Steinmetz, “Drug Guide Published by Author,” Amsterdam, 1959.
[49] P. Wren, “Potter’s New Cyclopedia of Botanical Drugs and Preparations,” Sir Isaac Pitman & Sons, Ltd., London, 1956.
[50] D. Barh and G. Viswanathan, “Syzygium cumini Inhibits Growth and Induces Apoptosis in Cervical Cancer Cell Lines: A Primary Study,” Ecancermedicalscience, Vol. 2, 2008, p. 83.
[51] G. Jagetia and M. Baliga, “Syzygium cumini (Jamun) Reduces the Radiation-Induced DNA Damage in the Cultured Human Peripheral Blood Lymphocytes: A Preliminary Study,” Toxicology Letters, Vol. 132, No. 1, 2002, pp. 19-25. doi:10.1016/S0378-4274(02)00032-2
[52] G. Jagetia and M. Baliga, “Evaluation of the Radioprotective Effect of the Leaf Extract of Syzygium cumini (Jamun) in Mice Exposed to a Lethal Dose of Gamma-Irradiation,” Nahrung, Vol. 47, 2003, pp. 181-185. doi:10.1002/food.200390042
[53] G. Jagetia, M. Baliga and P. Venkatesh, “Influence of Seed Extract of Syzygium cumini (Jamun) on Mice Exposed to Different Doses of Gamma-Radiation,” Journal of Radiation Research, Vol. 46, No. 1, 2005, pp. 59-65. doi:10.1269/jrr.46.59
[54] G. Jagetia, P. Shetty and M. S. Vidyasagar, “Treatment of Mice with Leaf Extract of Jamun (Syzygium cumini linn. Skeels) Protects against the Radiation-Induced Damage in the Intestinal Mucosa of Mice Exposed to Different Doses of γ-Radiation,” Pharmacologyonline, Vol. 1, 2008, pp. 169-195.
[55] J. Parmar, P. Sharma and P. Verma, “Chemopreventive Action of Syzygium Cumini on DMBA-Induced Skin Papillomagenesis in Mice,” Asian Pacific Journal of Cancer Prevention, Vol. 11, No. 1, 2010, pp. 261-265.
[56] R. Rastogi and B. Mehrotra, “Compendium of Indian Medicinal Plants,” Central Drug Research Institute, Lucknow, Vol. 1, 1990, pp. 388-389.
[57] L. Li, L. Adams and S. Chen, “Eugenia jambolana Lam. Berry Extract Inhibits Growth and Induces Apoptosis of Human Breast Cancer but Not Non-Tumorigenic Breast Cells,” Journal of Agriculture and Food Chemistry, Vol. 57, No. 3, 2009, pp. 826-831. doi:10.1021/jf803407q
[58] J. Veigas, M. Narayan and P. Laxman, “Chemical Nature, Stability and Bio Efficacies of Anthocyanins from Fruit Peel of Syzygium cumini Skeels,” Food Chemistry, Vol. 10, 2007, pp. 619-627. doi:10.1016/j.foodchem.2007.04.022
[59] A. Ranjan, A. Jaiswal and B. Raja, “Enhancement of Syzygium cumini (Indian Jamun) Active Constituents by Ultra-Violent (UV) Irradiation Method,” Scientific Research and Essays, Vol. 6, No. 12, 2011, pp. 2457-2464.
[60] P. Shafi, M. Rosamma and K. Jamil, “Antibacterial Activity of Syzygium cumini and Syzygium travancoricum Leaf Essential Oils,” Fitoterapia, Vol. 73, 2002, pp. 414- 416. doi:10.1016/S0367-326X(02)00131-4
[61] E. F. Steinmetz, “A Botanical Drug from the Tropics Used in the Treatment of Diabetes Mellitus,” Acta Phytotherapeutica, Vol. 7, No. 2, 1960, pp. 23-25.
[62] B. Mukerji, “Indigenous Indian Drugs Used in the treatment of Diabetes,” Journal of Scientific & Industrial Research, Vol. 10, 1951, pp. 1-18.
[63] S. S. Bhatnagar, H. Santapau, F. Fernandes, V. N. Kamat, N. J. Dastoor and T. S. N. Rao, “Physiological Activity of Indian Medicinal Plants,” Journal of Scientific & Industrial Research, Vol. 8, 1961, pp. 1-24.
[64] E. Drafehn, “Syzygium jambolana. Apoth. Ztg,” Chemical Abstracts, Vol. 50, 1987, pp. 112-114
[65] A. G. R. Nair and S. S. Subramanian, “Chemical Evaluation of the Flowers of Eugenia jambolana,” Journal of Scientific & Industrial Research, Vol. 21B, No. 9, 1962, pp. 457-458.
[66] J. Ferlay, H. R. Shin and F. Bray, “Estimates of Worldwidee Burden of Cancer in 2008: GLOBOCAN 2008,” International Journal of Cancer, Vol. 127, No. 12, 2010, pp. 2893-2917. doi:10.1002/ijc.25516
[67] C. Are, L. Colburn and S. Rajaram. “Disparities in Cancer Care between the United States of America and India and Opportunities for Surgeons to Lead,” Journal of Surgical Oncology, Vol. 102, No. 1, 2010, pp. 100-105. doi:10.1002/jso.21579
[68] P. K. Warrier, V. P. K. and N. C. Ramankutty, “Indian Med Plants,” Orient Longman Ltd, Hyderabad, Vol. 5, 1996, pp. 225-228.
[69] B. B. Aggarwal, M. E. Van Kuiken and L. H. Iyer, “Molecular Targets of Nutraceuticals Derived from Dietary Spices: Potential Role in Suppression of Inflammation and Tumorigenesis,” Experimental Biology and Medicine, Vol. 234, No. 8, 2009, pp. 825-849. doi:10.3181/0902-MR-78
[70] P. K. Goyal, P. Verma and P. Sharma, “Evaluation of Anti-Cancer and Anti-Oxidative Potential of Syzygium cumini against Benzo[a]pyrene (BaP) Induced Gastric Carcinogenesis in Mice,” Asian Pacific Journal of Cancer Prevention, Vol. 11, 2010, pp. 753-758.
[71] J. Parmar, P. Sharma and P. Verma, “Chemopreventive Action of Syzygium cumini on DMBA-Induced Skin Papillomagenesis in Mice,” Asian Pacific Journal of Cancer Prevention, Vol. 11, 2010, pp. 261-265.
[72] M. Sharma, L. Li and J. Celver, “Effects of Fruit Ellagitannin Extracts, Ellagic Acid, and Their Colonic Metabolite, Urolithin A, on Wnt Signaling,” Journal of Agriculture Food Chemistry, Vol. 58, No. 7, 2010, pp. 3965- 3969. doi:10.1021/jf902857v
[73] H. Tokuda, H. Ohigashi and K. Koshimizu, “Inhibitory Effects of Ursolic and Oleanolic Acid on Skin Tumor Promotion by 12-O-tetradecanoylphorbol-13-acetate”, Cancer Letters, Vol. 33, No. 3, 1986, pp. 279-285. doi:10.1016/0304-3835(86)90067-4
[74] N. Janakiram, C. Indranie and S. Malisetty, “Chemoprevention of Colon Carcinogenesis by Oleanolic Acid and Its Analog in Male F344 Rats and Modulation of COX-2 and Apoptosis in Human Colon HT-29 Cancer Cells,” Pharmaceutical Research, Vol. 25, No. 9, 2008, pp. 2151-2157. doi:10.1007/s11095-008-9582-7
[75] R. Furtado, E. Rodrigues and F. Araujo, “Ursolic Acid and Oleanolic Acid Suppress Preneoplastic Lesions Induced by 1,2-Dimethylhydrazine in Rat Colon,” Toxicology and Pathology, Vol. 36, No. 4, 2008, pp. 576-580. doi:10.1177/0192623308317423
[76] H. Gali, E. Perchellet and D. Klish, “Antitumorpromoting Activities of Hydrolyzable Tannins in Mouse Skin,” Carcinogenesis, Vol. 13, 1992, pp. 715-718. doi:10.1093/carcin/13.4.715
[77] A. Kaul and K. Khanduja, “Polyphenols Inhibit Promotional Phase of Tumorigenesis: Relevance of Superoxide Radicals,” Nutrional and Cancer, Vol. 32, No. 2, 1998, pp. 81-85. doi:10.1080/01635589809514723
[78] H. Mukhtar, B. Del and C. Marcelo, “Ellagic Acid: A Potent Naturally Occurring Inhibitor of Benzo[a]pyrene Metabolism and Its Subsequent Glucuronidation, Sulfation and Covalent Binding to DNA in Cultured BALB/C Mouse Keratinocytes,” Carcinogenesis, Vol. 5, No. 12, 1984, pp. 1565-1571. doi:10.1093/carcin/5.12.1565
[79] B. Del, H. Mukhtar and D. Bickers, “Inhibition of Epidermal Metabolism and DNA-Binding of Benzo[a]pyrene by Ellagic Acid,” Biochemical and Biophysical Research Communication, Vol. 114, No. 1, 1983, pp. 388-394. doi:10.1016/0006-291X(83)91639-X
[80] H. Mukhtar, M. Das and D. Bickers, “Inhibition of 3-Methylcholanthrene-Induced Skin Tumorigenicity in BALB/c Mice by Chronic Oral Feeding of Trace Amounts of Ellagic Acid in Drinking Water,” Cancer Research, Vol. 46, 1986, pp. 2262-2265.
[81] R. Chang, M. Huang and A. Wood, “Effect of Ellagic Acid and Hydroxylated Flavonoids on the Tumorigenicity of Benzo[a]pyrene and (+/-)-7 Beta, 8 Alpha-Dihydroxy- 9 Alpha, 10 Alpha-Epoxy-7,8,9,10-tetrahydrobenzo[a] pyrene on Mouse Skin and in the Newborn Mouse,” Carcinogenesis, Vol. 6, 1985, pp. 1127-1133. doi:10.1093/carcin/6.8.1127
[82] P. Lesca, “Protective Effects of Ellagic Acid and Other Plant Phenols on Benzo [a] Pyrene-Induced Neoplasia in Mice,” Carcinogenesis, Vol. 4, No. 12, 1983, pp. 1651- 1653. doi:10.1093/carcin/4.12.1651
[83] H. Mukhtar, M. Das and B. Del, “Protection against 3-Methylcholanthrene-Induced Skin Tumorigenesis in Balb/C Mice by Ellagic Acid,” Biochemical and Biophysical Research Communication, Vol.119, No. 2, 1984, pp. 751-757. doi:10.1016/S0006-291X(84)80314-9
[84] K. Raina, S. Rajamanickam and G. Deep, “Chemopreventive Effects of Oral Gallic Acid Feeding on Tumor Growth and Progression in TRAMP Mice,” Molecular and Cancer Therapy, Vol. 7, No. 5, 2008, pp. 1258-1267. doi:10.1158/1535-7163.MCT-07-2220
[85] H. Makita, T. Tanaka and H. Fujitsuka, “Chemoprevention of 4-Nitroquinoline 1-Oxide-Induced Rat Oral Carcinogenesis by the Dietary Flavonoids Chalcone, 2-Hydroxychalcone, and Quercetin,” Cancer Research, Vol. 56, No. 21, 1996, pp. 4904-4909.
[86] K. Khanduja, R. Gandhi and V. Pathania, “Prevention of N-Nitrosodiethylamine-Induced Lung Tumorigenesis by Ellagic Acid and Quercetin in Mice,” Food Chemistry and Toxicology, Vol. 37, No. 4, 1999, pp. 313-318. doi:10.1016/S0278-6915(99)00021-6
[87] S. De, J. Chakraborty and R. Chakraborty, “Chemopreventive Activity of Quercetin during Carcinogenesis in Cervix Uteri in Mice,” Phototherapy Research, Vol. 14, 2000, pp. 347-351. doi:10.1002/1099-1573(200008)14:5<347::AID-PTR613>3.0.CO;2-7
[88] S. De, R. Chakraborty and S. Ghosh, “Comparative Evaluation of Cancer Chemopreventive Efficacy of Alphatocopherol and Quercetin in a Murine Model,” Journal of Experience and Clinical Cancer Research, Vol. 23, 2004, pp. 251-258.
[89] A. Sengupta, S. Ghosh and S. Das, “Modulation of DMBA Induced Genotoxicity in Bone Marrow by Quercetin during Skin Carcinogenesis,” Journal of Experience and Clinical Cancer Research, Vol. 20, 2001, pp. 131-134.
[90] T. Walle, U. Walle and D. Sedmera, “Benzo [A] Pyreneinduced Oral Carcinogenesis and Chemoprevention: Studies in Bioengineered Human Tissue,” Drug Metab Dispos, Vol. 34, No. 3, 2006, pp. 346-350.
[91] S. Kamaraj, R. Vinodhkumar and P. Anandakumar, “The Effects of Quercetin on Antioxidant Status and Tumor Markers in the Lung and Serum of Mice Treated with Benzo (a) Pyrenean,” Biological and Pharmaceutical Bulletin, Vol. 30, No. 12, 2007, pp. 2268-2273. doi:10.1248/bpb.30.2268
[92] T. Kumamoto, M. Fujii and D. Hou, “Myricetin Directly Targets JAK1 to Inhibit Cell Transformation,” Cancer Letters, Vol. 275, No. 1, 2009, pp. 17-26. doi:10.1016/j.canlet.2008.09.027
[93] T. Kumamoto, M. Fujii and D. Hou, “Akt Is a Direct Target for Myricetin to Inhibit Cell Transformation,” Molecular and Cell Biochemistry, Vol. 332, No. 1, 2009, pp. 33-41. doi:10.1007/s11010-009-0171-9
[94] A. Baskar, S. Ignacimuthu and G. Paulraj, “Chemopreventive Potential of Beta-Sitosterol in Experimental Colon Cancer Model—An in Vitro and in Vivo Study”, BMC Complementary and Alternative Medicine, Vol. 10, 2010, p. 24. doi:10.1186/1472-6882-10-24
[95] D. Hou, K. Kai and J. Li, “Anthocyanidins Inhibit Activator Protein 1 Activity and Cell Transformation: Structure-Activity Relationship and Molecular Mechanisms,” Carcinogenesis, Vol. 25, 2004, pp. 29-36. doi:10.1093/carcin/bgg184
[96] D. Syed, Y. Suh and F. Afaq, “Dietary Agents for Chemoprevention of Prostate Cancer,” Cancer Letters, Vol. 26, 2008, pp. 167-176. doi:10.1016/j.canlet.2008.02.050
[97] K. Lee, N. Kang and J. Han, “Myricetin Down-Regulates Phorbol Ester-Induced Cyclooxygenase-2 Expression in Mouse Epidermal Cells by Blocking Activation of Nuclear Factor Kappa B,” Journal of Agriculture and Food Chemistry, Vol. 55, 2007, pp. 9678-9684. doi:10.1021/jf0717945
[98] K. Lee, N. Kang and E. Rogozin, “Myricetin Is a Novel Natural Inhibitor of Neoplastic Cell Transformation and MEK1,” Carcinogenesis, Vol. 28, No. 9, 2007, pp. 1918- 1927. doi:10.1093/carcin/bgm110
[99] S. Lee and J. Lin, “Inhibitory Effects of Phytopolyphenols on TPA-Induced Transformation, PKC Activation, and c-Jun Expression in Mouse Fibroblast Cells,” Nutrition and Cancer, Vol. 28, 1997, pp. 177-183. doi:10.1080/01635589709514572
[100] S. Jung, K. Lee and S. Byun, “Myricetin Suppresses UVB-Induced Skin Cancer by Targeting Fyn,” Cancer Research, Vol. 68, No. 14, 2008, pp. 6021-6029. doi:10.1158/0008-5472.CAN-08-0899
[101] W. Kim, H. Yang and H. Youn, “Myricetin Inhibits Akt Survival Signaling and Induces Bad-Mediated Apoptosis in a Low Dose Ultraviolet (UV)-B-Irradiated HaCaT Human Immortalized Keratinocytes,” Journal of Radiation Research, Vol. 51, No. 3, 2010, pp. 285-296. doi:10.1269/jrr.09141
[102] C. Ko, S. Shen and T. Lee, “Myricetin Inhibits Matrix Metalloproteinase 2 Protein Expression and Enzyme Activity in Colorectal Carcinoma Cells,” Molecular Cancer Therapeutics, Vol. 4, No. 2, 2005, pp. 281-290.
[103] M. Das, W. Khan and P. Asokan, “Inhibition of Polycyclic Aromatic Hydrocarbon-DNA Adduct Formation in Epidermis and Lungs of SENCAR Mice by Naturally Occurring Plant Phenols,” Cancer Research, Vol. 47, No. 3, 1987, pp. 767-773.
[104] K. Lee, D. Lee and S. Seo, “Phosphatidylinositol 3- Kinase, a Novel Target Molecule for the Inhibitory Effects of Kaempferol on Neoplastic Cell Transformation,” Carcinogenesis, Vol. 31, No. 8, 2010, pp. 1338-1343. doi:10.1093/carcin/bgq102
[105] K. Yasukawa, M. Takido and T. Matsumoto, “Sterol and Triterpene Derivatives from Plants Inhibit the Effects of a Tumor Promoter, and Sitosterol and Betulinic Acid Inhibit Tumor Formation in Mouse Skin Two-Stage Carcinogenesis,” Oncology, Vol. 48, No. 1, 1991, pp. 72-76. doi:10.1159/000226898
[106] J. Kwon, K. Lee, J. Kim, S. K. Jung, N. J. Kang, M. K. Hwang, Y. S. Heo, A. M. Bode, Z. Dong and H. J. Lee, “Delphinidin Suppresses Ultraviolet B-Induced Cyclooxygenases-2 Expression through Inhibition of MAPKK4 and PI-3 Kinase,” Carcinogenesis, Vol. 30, No. 11, 2009, pp. 1932-1940. doi:10.1093/carcin/bgp216
[107] G. Jagetia and M. Baliga, “The Evaluation of Nitric Oxide Scavenging Activity of Certain Indian Medicinal Plants in Vitro: A Preliminary Study,” Journal of Medicinal Food, Vol. 7, No. 3, 2004, pp. 343-348.
[108] H. Patt , E. B. Tyree, R. L.Straube and D. E. Smith, “Cysteine Protection against X Irradiation,” Science, Vol. 110, No. 2582, 1949, pp. 213-214. doi:10.1126/science.110.2852.213
[109] H. Hsu, J. Yang and C. Lin, “Effects of Oleanolic Acid and Ursolic Acid on Inhibiting Tumor Growth and Enhancing the Recovery of Hematopoietic System Post Irradiation in Mice,” Cancer Letters, Vol. 111, No. 1, 1997, pp. 7-13. doi:10.1016/S0304-3835(96)04481-3
[110] P. Nemavarkar, B. Chourasia and K. Pasupathy, “Evaluation of Radioprotective Action of Compounds Using Saccharomyces cerevisiae,” Journal of Environmental Pathology, Toxicology and Oncology, Vol. 23, No. 2, 2004, pp. 145-151. doi:10.1615/JEnvPathToxOncol.v23.i2.70
[111] V. Benkovic, N. Kopjar and Horvat, “Evaluation of Radioprotective Effects of Propolis and Quercetin on Human White Blood Cells in Vitro,” Biological and Pharmaceutical Bulltein, Vol. 31, 2008, pp. 1778-1785. doi:10.1248/bpb.31.1778
[112] V. Benkovic, A. Knezevic and D. Dikic, “Radioprotective Effects of Propolis and Quercetin in Gamma-Irradiated Mice Evaluated by the Alkaline Comet Assay,” Phytomedicine, Vol. 15, 2008, pp. 851-858. doi:10.1016/j.phymed.2008.02.010
[113] V. Benkovic, A. Knezevic and D. Dikic “Radioprotective Effects Of Quercetin And Ethanolic Extract Of Propolis In Gamma-Irradiated Mice,” Archives of Industrial Hygiene and Toxicology, Vol. 60, No. 2, 2009, pp. 129-138. doi:10.2478/10004-1254-60-2009-1908
[114] N. Gandhi and C. Nair, “Protection of DNA and Membrane from Gamma Radiation Induced Damage by Gallic Acid,” Molecular and Cellular Biochemistry, Vol. 278, No. 1-2, 2005, pp. 111-117. doi:10.1007/s11010-005-6940-1
[115] P. Nemavarkar, B. Chourasia and K. Pasupathy, “Evaluation of Radioprotective Action of Compounds Using Saccharomyces cerevisiae,” Journal of Environmental Pathology Toxicology and Oncology, Vol. 23, No. 2, 2004, pp. 145-151. doi:10.1615/JEnvPathToxOncol.v23.i2.70
[116] K. Priyadarsini, S. Khopde and S. Kumar, “Free Radical Studies of Ellagic Acid, a Natural Phenolic Antioxidant,” Journal of Agriculture and Chemistry, Vol. 50, 2000, pp. 2200-2206. doi:10.1021/jf011275g
[117] S. Bhosle, N. Huilgol and K. Mishra, “Enhancement of Radiation-Induced Oxidative Stress and Cytotoxicity in Tumor Cells by Ellagic Acid,” Clinica Chimica Acta, Vol. 359, 2005, pp. 89-100. doi:10.1016/j.cccn.2005.03.037
[118] V. DeVita, T. Lawrence and S. Hellman, “Cancer: Principles & Practice of Oncology,” 8th Edition, Wolters Kluwer/Lippincott Williams & Wilkins a Wolters Kluwer Business, Philadelphia, 2004.
[119] R. Arun, M. Prakash and S. Abraham, “Role of Syzygium Cumini Seed Extract in the Chemoprevention of in Vivo Genomic Damage and Oxidative Stress,” Journal of Ethnopharmacology, Vol. 134, No. 2, 2010, pp. 329-333. doi:10.1016/j.jep.2010.12.014
[120] D. Barh and G. Viswanathan, “Syzygium cumini Inhibits Growth and Induces Apoptosis in Cervical Cancer Cell Lines: A Primary Study,” Ecancermedicalscience, Vol. 2, 2008, p. 83.
[121] J. Li, W. Guo and Q. Y. Yang, “Effects of Ursolic Acid and Oleanolic Acid on Human Colon Carcinoma Cell Line HCT15,” World Journal of Gastroenterology, Vol. 8, No. 3, 2002, pp. 493-495.
[122] P. Zhang, H. Li and D. Chen, “Oleanolic Acid Induces Apoptosis in Human Leukemia Cells through Caspase Activation and Poly (ADP-Ribose) Polymerase Cleavage,” Acta Biochemical and Biophysics Sinces, Vol. 39, No. 10, 2007, pp. 803-809. doi:10.1111/j.1745-7270.2007.00335.x
[123] P. Wu, W. Chi and Z. T. Liang, “Oleanolic Acid Isolated from Oldenlandia Diffusa Exhibits a Unique Growth Inhibitory Effect against Ras-Transformed Fibroblasts,” Life Sciences, Vol. 85, No. 3-4, 2009, pp. 113-121. doi:10.1016/j.lfs.2009.04.025
[124] S. Yan, C. Huang and S. Wu, “Oleanolic Acid and Ursolic Acid Induce Apoptosis in Four Human Liver Cancer Cell Lines,” Toxicology in Vitro, Vol. 24, No. 3, 2010, pp. 842-848. doi:10.1016/j.tiv.2009.12.008
[125] S. Kuo, “Antiproliferative Potency of Structurally Distinct Dietary Flavonoids on Human Colon Cancer Cells,” Cancer Letters, Vol. 110, No. 1-2, 1996, pp. 41-48. doi:10.1016/S0304-3835(96)04458-8
[126] S. Caltagirone, C. Rossi and A. Poggi, “Flavonoids Apigenin and Quercetin Inhibit Melanoma Growth and Metastatic Potential,” International Journal of Cancer, Vol. 87, 2000, pp. 595-600. doi:10.1002/1097-0215(20000815)87:4<595::AID-IJC21>3.0.CO;2-5
[127] H. Nair, K. Rao and R. Aalinkeel, “Inhibition of Prostate Cancer Cell Colony Formation by the Flavonoid Quercetin Correlates with Modulation of Specific Regulatory Genes,” Clinical and Diagnostic Laboratory Immunology, Vol. 11, No. 1, 2004, pp. 63-69.
[128] M. Vijayababu, A. Arunkumar and P. Kanagaraj, “Quercetin Downregulates Matrix Metalloproteinases 2 and 9 Proteins Expression in Prostate Cancer Cells (PC-3),” Molecular and Cellular Biochemistry, Vol. 287, No. 1-2, 2006, pp. 109-116. doi:10.1007/s11010-005-9085-3
[129] J. Jeong, M. Kim and T. Kim, “Kaempferol Induces Cell Death through ERK and Akt-Dependent Down-Regulation of XIAP and Survivin in Human Glioma Cells,” Neurochemical Research, Vol. 34, No. 5, 2009, pp. 991- 1001. doi:10.1007/s11064-008-9868-5
[130] W. Li, B. Du and T. Wang, “Kaempferol Induces Apoptosis in Human HCT116 Colon Cancer Cells via the Ataxiatelangiectasia Mutated-p53 Pathway with the Involvement of p53 Upregulated Modulator of Apoptosis,” Chemco-Biological Interactions, Vol. 177, 2009, pp. 121- 127. doi:10.1016/j.cbi.2008.10.048
[131] J. W. Kang, J. H. Kim, K. Song, S. H. Kim, J. H. Yoon, and K. S. Kim, “Kaempferol and Quercetin, Components of Ginkgo Biloba Extract (EGb 761), Induce Caspase-3-Dependent Apoptosis in Oral Cavity Cancer Cells,” Phytotherapy Research (Special Issue: Flavonoids and Polyphenolics), Vol. 24, No. S1, 2010, pp. S77-S82.
[132] W. Huang, Y. Chiu and M. Fan, “Kaempferol Induced Apoptosis via Endoplasmic Reticulum Stress and Mitochondria-Dependent Pathway in Human Osteosarcoma U-2 OS Cells,” Molecular Nutrition and Food Research, Vol. 54, No. 11, 2010, pp. 1585-1595. doi:10.1002/mnfr.201000005
[133] S. Kuntz, U. Wenzel and H. Daniel, “Comparative Analysis of the Effects of Flavonoids on Proliferation, Cytotoxicity, and Apoptosis in Human Colon Cancer Cell Lines,” European Journal of Nutrition, Vol. 38, 1999, pp. 133-142. doi:10.1007/s003940050054
[134] D. Chen, K. Daniel and M. Chen, “Dietary Flavonoids as Proteasome Inhibitors and Apoptosis Inducers in Human Leukemia Cells,” Biochemical Pharmacology, Vol. 69, No. 10, 2005, pp. 1421-1432. doi:10.1016/j.bcp.2005.02.022
[135] Q. Zhang, X. Zhao and Z. Wan, “Flavones and Flavonols Exert Cytotoxic Effects on a Human Oesophageal Adenocarcinoma Cell Line (OE33) by Causing G2/M Arrest and Inducing Apoptosis,” Food and Chemical Toxicology, Vol. 46, No. 6, 2008, pp. 2042-2053. doi:10.1016/j.fct.2008.01.049
[136] X. Zhang, Y. Ling and H. Yu, “Studies on Mechanism of Myricetin-Induced Apoptosis in Human Hepatocellular Carcinoma HepG-2 Cells,” China Journal of Chinese Materia Medica, Vol. 35, No. 8, 2010, pp. 1046-1050.
[137] L. Reddivari, J. Vanamala and S. Safe, “The Bioactive Compounds Alpha-Chaconine and Gallic Acid in Potato Extracts Decrease Survival and Induce Apoptosis in LNCaP and PC3 Prostate Cancer Cells,” Nutrition and Cancer, Vol. 62, No. 5, 2010, pp. 601-610. doi:10.1080/01635580903532358
[138] H. Chen, Y. Wu and Y. Chia, “Gallic Acid, a Major Component of Toona Sinensis Leaf Extracts, Contains a ROS Mediated ROS Mediated Anti-Cancer Activity in Human Prostate Cancer Cells,” Cancer Letters, Vol. 286, 2009, pp. 161-171. doi:10.1016/j.canlet.2009.05.040
[139] C. Agarwal, A. Tyagi and R. Agarwal, “Gallic Acid Causes Inactivating Phosphorylation of cdc25A/cdc25C- cdc2 via ATM-Chk2 Activ Tion, Leading to Cell Cycle Arrest, and Induces Apoptosis in Human Prostate Carcinoma DU145 Cells,” Molecular Cancer Therapeutics, Vol. 5, No. 12, 2006, pp. 3294-3302. doi:10.1158/1535-7163.MCT-06-0483
[140] M. Kaur, B. Velmurugan and S. Rajamanickam, “Gallic Acid, an Active Constituent of Grape Seed Extract, Exhibits Anti-Proliferative, Pro-Apoptotic and Anti-Tumorigenic Effects against Prostate Carcinoma Xenograft Growth in Nude Mice,” Pharmaceutical Research, Vol. 26, No. 9, 2009, pp. 2133-2140.
[141] C. Lo, T. Lai and J. Yang, “Gallic Acid Induces Apoptosis in A375.S2 Human Melanoma Cells through Caspase-Dependent and -Independent Pathways,” International Journal of Oncology, Vol. 37, No. 2, 2010, pp. 377-385. doi:10.1007/s11095-009-9926-y
[142] T. Rabi, S. Shukla and S. Gupta, “Betulinic Acid Suppresses Constitutive and TNF Alpha-Induced NF-KappaB Activation and Induces Apoptosis in Human Prostate Carcinoma PC-3 Cells,” Molecular Carcinogenecis, Vol. 47, 2008, pp. 964-973. doi:10.1002/mc.20447
[143] L. Yang, Y. Chen and Q. Ma, “Effect of Betulinic Acid on the Regulation of Hiwi and Cyclin B1 in Human Gastric Adenocarcinoma AGS Cells,” Acta Pharmacologica Sinica, Vol. 31, No. 1, 2010, pp. 66-72. doi:10.1038/aps.2009.177
[144] M. Eichenmüller, B. Hemmerlein and D. Schweinitz, “Betulinic Acid Induces Apoptosis and Inhibits Hedgehog Signalling in Rhabdomyosarcoma,” British Journal of Cancer, Vol. 103, No. 1, 2010, pp. 43-51. doi:10.1038/sj.bjc.6605715
[145] F. Mullauer, J. Kessler and J. Medema, “Betulinic Acid Induces Cytochrome c Release and Apoptosis in a Bax, Bakindependent, Permeability Transition Pore Dependent Fashion,” Apoptosis, Vol. 14, No. 2, 2009, pp. 191-202. doi:10.1007/s10495-008-0290-x
[146] Z. Chen, Q. Wu and Y. Chen, “Effect of Betulinic Acid on Proliferation and Apoptosis in Jurkat Cells and Its Mechanism,” China Journal of Chinese Materia Medica, Vol. 30, 2008, pp. 588-592.
[147] H. Moteki, H. Hibasami and Y. Yamada, “Specific Induction of Apoptosis by 1,8-Cineole in Two Human Leukemia Cell Lines, but Not a in Human Stomach Cancer Cell Line,” Oncology Reports, Vol. 9, 2002, pp. 757-760.
[148] A. Awad and R. von J. Cone, “Beta-Sitosterol Inhibits Growth of HT-29 Human Colon Cancer Cells by Activating the Sphingomyelin Cycle,” Anticancer Research, Vol. 18, 1998, pp. 471-473.
[149] A. Awad, Y. Chen and C. Fink, “Beta-Sitosterol Inhibits HT-29 Human Colon Cancer Cell Growth and Alters Membrane Lipids,” Anticancer Research, Vol. 16, 1996, pp. 2797-2804.
[150] A. Awad, A. Downie and C. Fink, “Inhibition of Growth and Stimulation of Apoptosis by Beta-Sitosterol Treatment of MDA-MB-231 Human Breast Cancer Cells in Culture,” International Journal of Molecular Medicine, Vol. 5, 2000, pp. 541-545.
[151] A. Awad, Y. Gan and C. Fink, “Effect of Beta-Sitosterol, a Plant Sterol, on Growth, Protein Phosphatase 2A, and Phospholipase D in LNCaP Cells,” Nutrion and Cancer, Vol. 36, No. 1, 2000, pp. 74-78. doi:10.1207/S15327914NC3601_11
[152] A. Awad, A. Downie and C. Fink, “Dietary Phytosterol Inhibits the Growth and Metastasis of MDA-MB-231 Human Breast Cancer Cells Grown in SCID Mice,” Anticancer Research, Vol. 20, No. 2A, 2000, pp. 821- 824.
[153] A. Awad, B. C. Fink and H. Williams, “In Vitro and in Vivo (SCID Mice) Effects of Phytosterols on the Growth and Dissemination of Human Prostate Cancer PC-3 Cells,” European Journal of Cancer Prevention, Vol. 10, No. 6, 2001, pp. 507-513. doi:10.1097/00008469-200112000-00005
[154] A. Awad, R. Roy and C. Fink, “Beta-Sitosterol, a Plant Sterol, Induces Apoptosis and Activates Key Caspases in MDAMB-231 Human Breast Cancer Cells,” Oncology Reports, Vol. 10, 2003, pp. 497-500.
[155] A. Awad, H. Williams and C. Fink, “Phytosterols Reduce in Vitro Metastatic Ability of MDA-MB-231 Human Breast Cancer Cells,” Nutrition and Cancer, Vol. 40, No. 2, 2001, pp. 157-164. doi:10.1207/S15327914NC402_12
[156] Y. Choi, K. Kong and Y. Kim, “Induction of Bax and Activation of Caspases during Beta-Sitosterol-Mediated Apoptosis in Human Colon Cancer Cells,” International Journal of Oncology, Vol. 23, 2003, pp. 1657-1662.
[157] D. Moon , K. Lee and Y. Choi, “Beta-Sitosterolinduced Apoptosis Is Mediated by the Activation of ERK and the Downregulation of Akt in MCA-102 Murine Fibrosarcoma Cells,” International Immunopharmacology, Vol. 7, No. 8, 2007, pp. 1044-1053. doi:10.1016/j.intimp.2007.03.010
[158] D. Moon, M. Kim and Y. Choi, “Beta-Sitosterol Induces G2/M Arrest, Endoreduplication, and Apoptosis through the Bcl-2 and PI3K/Akt Signaling Pathways,” Cancer Letters, Vol. 264, No. 2, 2008, pp. 181-191. doi:10.1016/j.canlet.2008.01.032
[159] Y. Zhao, S. Chang and G. Qu, “Beta-Sitosterol Inhibits Cell Growth and Induces Apoptosis in SGC-7901 Human Stomach Cancer Cells,” Journal of Agriculture and Food Chemistry, Vol. 57, 2009, pp. 5211-5218. doi:10.1021/jf803878n
[160] N. Seeram, Y. Zhang and M. Nair, “Inhibition of Proliferation of Human Cancer Cells and Cyclooxygenase Enzymes by Anthocyanidins and Catechins,” Nutrition and Cancer, Vol. 46, No. 1, 2003, pp. 101-106. doi:10.1207/S15327914NC4601_13
[161] M. Lazzre, M. Savio and R. Pizzala, “Anthocyanins Induce Cell Cycle Perturbations and Apoptosis in Different Human Cell Lines,” Carcinogenesis, Vol. 25, No. 8, 2004, pp. 1427-1433. doi:10.1093/carcin/bgh138
[162] N. Katsube, K. Iwashita and T. Tsushida, “Induction of Apoptosis in Cancer Cells by Bilberry (Vaccinium Myrtillus) and the Anthocyanins,” Journal of Agriculture and Food Chemistry, Vol. 51, No. 6, 2003, pp. 68-75. doi:10.1021/jf025781x
[163] S. Meiers, M. Kemény and U. Weyand, “The Anthocyanidins Cyanidin and Delphinidin Are Potent Inhibitors of the Epidermal Growth-Factor Receptor,” Journal of Agriculture and Food Chemistry, Vol. 49, No. 2, 2001, pp. 958-962. doi:10.1021/jf0009100
[164] D. Hou and T. Ose, “Anthocyanidins Induce Apoptosis in Human Promyelocytic Leukemia Cells: Structure Activity Relationship and Mechanisms Involved,” International Journal of Oncology, Vol. 23, No. 3, 2003, pp. 705-712.
[165] D. Marko, N. Puppel and Z. Tjaden, “The Substitution Pattern of Anthocyanidins Affects Different Cellular Signaling Cascades Regulating Cell Proliferation,” Molecular Nutrition and Food Research, Vol. 48, No. 4, 2004, pp. 318-325. doi:10.1002/mnfr.200400034
[166] Y. Zhang, S. Vareed and M. Nair, “Human Tumor Cell Growth Inhibition by Nontoxic Anthocyanidins, the Pigments in Fruits and Vegetables,” Life Sciences, Vol. 76, No. 13, 2005, pp. 1465-1472. doi:10.1016/j.lfs.2004.08.025
[167] A. Srivastava, C. Akoh and J. Fischer, “Effect of Anthocyanin Fractions from Selected Cultivars of Georgiagrown Blueberries on Apoptosis and Phase II Enzymes,” Journal of Agriculture and Food Chemistry, Vol. 55, 2007, pp. 3180-3185. doi:10.1021/jf062915o
[168] D. N. Syed, F. Afaq and S. Sarfaraz, “Delphinidin Inhibits Cell Proliferation and Invasion via Modulation of Met receptor Phosphorylation,” Toxicology and Applied Pharmacology, Vol. 231, No. 1, 2008, pp. 52-60. doi:10.1016/j.taap.2008.03.023
[169] D. Fridrich, N. Teller and M. Esselen, “Comparison of Delphinidin, Quercetin and (-)-Epigallocatechin-3- Gallate as Inhibitors of the EGFR and the ErbB2 Receptor Phosphorylation,” Molecular Nutrional and Food Research, Vol. 52, 2008, pp. 815-822. doi:10.1002/mnfr.200800026
[170] F. Afaq, N. Zaman and N. Khan, “Inhibition of Epidermal Growth Factor Receptor Signaling Pathway by Delphinidin, an Anthocyanidin in Pigmented Fruits and Vegetables,” International Journal of Cancer, Vol. 123, No. 7, 2008, pp. 1508-1515. doi:10.1002/ijc.23675
[171] J. Yun, F. Afaq and N. Khan, “Delphinidin, an Anthocyanidin in Pigmented Fruits and Vegetables, Induces Apoptosis and Cell Cycle Arrest in Human Colon Cancer HCT116 Cells,” Molecular Carcinogenesis, Vol. 48, 2009, pp. 260-270. doi:10.1002/mc.20477
[172] B. Hafeez, I. Siddiqui and M. Asim, “A Dietary Anthocyanidin Delphinidin Induces Apoptosis of Human Prostate Cancer PC3 Cells in Vitro and in Vivo: Involvement of Nuclear Factor Kappab Signaling,” Cancer Research, Vol. 68, No. 20, 2008, pp. 8564-8572. doi:10.1158/0008-5472.CAN-08-2232
[173] N. Kang, K. Lee and J. Kwon, “Delphinidin Attenuates Neoplastic Transformation in JB6 Cl41 Mouse Epidermal Cells by Blocking Raf/Mitogen-Activated Protein Kinase Kinase/Extracellular Signal-Regulated Kinase Signaling,” Cancer Prevention Research, Vol. 1, No. 7, 2008, pp. 522-531. doi:10.1158/1940-6207.CAPR-08-0071
[174] D. Shin, C. Ryu and W. Lee, “Induction of Apoptosis and Inhibition of Invasion in Human Hepatoma Cells by Anthocyanins from Meoru,” Annals New Yark Academy of Sciences, Vol. 1171, No. 1, 2009, pp. 137-148. doi:10.1111/j.1749-6632.2009.04689.x
[175] J. Cvorovic, F. Tramer and M. Granzotto, “Oxidative Stress-Based Cytotoxicity of Delphinidin and Cyanidin in Colon Cancer Cells,” Archives of Biochemistry and Biophysics, Vol. 501, 2010, pp. 151-157. doi:10.1016/
[176] N. Teller, W. Thiele and U. Boettler, “Delphinidin Inhibits a Broad Spectrum of Receptor Tyrosine Kinases of the ErbB and VEGFR Family,” Molecular Nutrition and Food Research, Vol. 53, No. 9, 2009, pp. 1075-1083. doi:10.1002/mnfr.200800524
[177] C. Yeh and G. Yen, “Induction of Apoptosis by the Anthocyanidins through Regulation of Bcl-2 Gene and Activation of c-Jun N-Terminal Kinase Cascade in Hepatoma Cells,” Journal of Agriculture and Food Chemistry, Vol. 53, No. 9, 2005, pp. 1740-1749. doi:10.1021/jf048955e

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.